[1]陶俊,王晓峰,王彩玲,等.聚四氟乙烯包覆铝粉烧结的模拟与分析[J].爆破器材,2015,44(02):18-22、27.[doi:10.3969/j.issn.10018352.2015.02.005]
 TAO Jun,WANG Xiaofeng,WANG Cailing,et al.Simulation and Analysis of the Sintering Process of Aluminum Powder Coated by Teflon[J].EXPLOSIVE MATERIALS,2015,44(02):18-22、27.[doi:10.3969/j.issn.10018352.2015.02.005]
点击复制

聚四氟乙烯包覆铝粉烧结的模拟与分析()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
44
期数:
2015年02
页码:
18-22、27
栏目:
基础理论
出版日期:
2015-04-20

文章信息/Info

Title:
Simulation and Analysis of the Sintering Process of Aluminum Powder Coated by Teflon
文章编号:
4871
作者:
陶俊王晓峰王彩玲韩仲熙黄亚峰刁小强
西安近代化学研究所(西安,710065)
Author(s):
TAO Jun WANG Xiaofeng WANG Cailing HAN Zhongxi HUANG Yafeng DIAO Xiaoqiang
Xi’an Modern Chemistry Research Institute (Shaanxi Xi’an, 710065)
关键词:
分子动力学耗散粒子动力学聚四氟乙烯结合能混溶性
Keywords:
molecular dynamics dissipative particle dynamics PTFE binding energy miscibility
分类号:
TD235.2+1; O641
DOI:
10.3969/j.issn.10018352.2015.02.005
文献标志码:
A
摘要:
为了分析烧结过程对聚四氟乙烯(PTFE)包覆Al粉性能的影响,利用分子动力学手段计算了298 K和678 K时PTFE在Al2O3(001)、(010)及(100)晶面6×6晶层的结合能,利用耗散粒子动力学手段模拟了298 K和678 K时Al2O3/PTFE在不同时刻的介观状态。计算及模拟结果表明:298 K时,PTFE在Al2O3(001)、(010)及(100)晶面的6×6晶层的结合能分别为2 782.67、5 582.97及4 634.32 kJ/mol;678 K时PTFE与Al2O3(001)、(010)及(100)晶面的结合能分别是2 835.29、5 537.54及4 608.49 kJ/mol。低温时,PTFE和Al2O3混溶性差,两种物质发生明显分相;高温时,PTFE和Al2O3混溶性较好,没有发生明显的分相。烧结过程有助于PTFE在Al2O3中的扩散,同时还可以提高聚合物与Al2O3的混溶性,但对PTFE包覆Al粉的强度影响不大。
Abstract:
In order to analyze the effects of sintering process on the properties of aluminium powder coated by teflon (PTFE), the binding energy of PTFE on the 6×6 crystal layer of Al2O3(001), (010) and (100) crystal plane at 298 K and 678 K were calculated by molecular dynamics method, and the mesoscopic state of PTFE-Al2O3 at different times at 298 K and 678 K were simulated by dissipative particle dynamics method. Calculation and simulation results show that the binding energy of PTFE on Al2O3 (001), (010) and (100) crystal plane at 298 K is 2 782.67, 5 582.97 kJ/mol and 4 634.32kJ/mol, respectively; while at 678 K it is 2 835.29, 5 537.54 kJ/mol and 4 608.49 kJ/mol, respectively. The compatibility of PTFE and Al2O3 is poor at low temperature, for which the two substances are separated. At elevated temperature PTFE and Al2O3 present better compatibility, without obvious phase separation. The sintering process promotes the diffusion of PTFE in Al2O3 and also can increase the miscibility of the polymer and Al2O3. However, PTFE has little effect on the strength of coated aluminium powder.

参考文献/References:

[1]Rose M T,Doll D W,Hodgson J R,et al. Reactive material enhanced projectiles and related methods:US,2006/0011086 A1[P].2006-01-19.
[2]阳世清,徐松林,张彤. PTFE /Al反应材料制备工艺及性能[J].国防科技大学学报,2008,30(6):39-42,62.
 Yang Shiqing, Xu Songlin, Zhang Tong. Preparation and performance of PTEF/Al reactive materials[J]. Journal of National University of Defense Technology,2008,30(6): 39-42,62.
[3]Dolgoborodov A Yu,Streletskii A N,Makhov M N,et al. Explosive compositions based on the mechanoactivatived metal-oxider mixtures[J]. Russian Journal of Physical Chemistry B,2007,1(6):606-611.
[4]何丽蓉,肖乐勤,菅晓霞,等.nAl/nPTFE复合物的热行为[J].火炸药学报,2012,35(5):29-32.
He Lirong,Xiao Leqin,Jian Xiaoxia,et al.Thermal behaviour of n-Al/nPTFE composite[J].Chinese Journal of Explosives & Propellants, 2012,35(5):29-32.
[5]徐松林,阳世清,徐文涛,等.PTFE/Al反应材料的力学性能研究[J].高压物理学报,2009,23(5):384-388.
 Xu Songlin,Yang Shiqing,Xu Wentao,et al.Research on the mechaincal performance of PTFE/Al reactive materials[J]. Chinese Journal of High Pressure Physics, 2009,23(5):384-388.
[6]Bates L R,Bourne B.Oil well perforators:US,2007/0056462 A1[P].2007-03-15.
[7]Nielson D B,Truitt R M,Ashcroft B N. Reactive material enhanced projectiles and related methods:US,2008/0035007 A1[P].2008-02-14.
[8]赵鹏铎,卢芳云,李俊玲,等. 活性材料PTFE/Al动态压缩性能[J].含能材料,2009,17(4):459-462.
 Zhao Pengduo,Lu Fangyun,Li Junling,et al. The dynamic compressive properties of PTFE/Al reactive materials[J]. Chinese Journal of Energetic Materials,2009,17(4):459-462.
[9]徐松林.PTFE/Al含能反应材料力学性能研究[D].长沙:国防科技大学,2010.
 Xu Songlin. Study on the mechanical perfrmance of polytetrafluorethylene/Al energetic reactive materials[D]. Changsha:National University of Defense Technology,2010.
[10]许晓娟,肖继军,黄辉,等. ε-CL-20基PBX结构与性能的分子动力学模拟HEDM理论配方设计初探[J].中国科学B辑:化学,2007,37(6):556-563.
[11]Sewell T D,Menikoff R,Bedrov D,et al. A molecular dynamics simulation study of elastic properties of HMX[J]. The Journal of Chemical Physics,2003,119(14):7417-7426.
[12]Qiu Ling,Xiao Heming,Zhu Weihua,et al. Ab initio and molecular dynamics study of crystalline TNAD (trans-1,4,5,8-tetrabitro-1,4,5,8-tetraazadecalin)[J]. The Journal of Physical Chemistry B,2006,110(22):10651-10661.
[13]杨小震. 分子模拟与高分子材料[M].北京:科学出版社,2002:1-10.
[14]焦东明,杨月诚,强洪夫,等.键合剂对HTPB和A1/Al2O3之间界面作用的分子模拟[J].火炸药学报,2009,32(4):60-63.
 Jiao Dongming,Yang Yuecheng,Qiang Hongfu,et al. Molecular simulation of effect of bonding agents on interface interaction for HTPB and Al/Al2O3[J]. Chinese Journal of Explosives & Propellants,2009,32(4): 60-63.

相似文献/References:

[1]王泽清①,余咸旱②,刘威①,等.聚醋酸乙烯酯与黑索今体系的分子动力学模拟[J].爆破器材,2019,48(05):6.[doi:10.3969/j.issn.1001-8352.2019.05.002]
 WANG Zeqing,YU Xianhan,LIU Wei,et al.Molecular Dynamics Simulation of PVAc and RDX[J].EXPLOSIVE MATERIALS,2019,48(02):6.[doi:10.3969/j.issn.1001-8352.2019.05.002]
[2]高杰,王红星,金大勇,等.DNAN/DNTF二元共熔物在热和机械刺激下的安全性研究[J].爆破器材,2021,50(03):35.[doi:10.3969/j.issn.1001-8352.2021.03.007]
 GAO Jie,WANG Hongxing,JIN Dayong,et al.Safety of DNAN/DNTF Binary Eutectic under Thermal Stimulation and Mechanical Stimulation[J].EXPLOSIVE MATERIALS,2021,50(02):35.[doi:10.3969/j.issn.1001-8352.2021.03.007]
[3]孙翠①,张力②.基于分子动力学的DNAN基熔铸炸药结合能和热分解反应性能研究[J].爆破器材,2022,51(03):1.[doi:10.3969/j.issn.1001-8352.2022.03.001]
 SUN Cui,ZHANG Li.Binding Energy and Thermal Decomposition Reaction Properties of DNAN-Based Melt-Cast Explosive Based on Molecular Dynamics[J].EXPLOSIVE MATERIALS,2022,51(02):1.[doi:10.3969/j.issn.1001-8352.2022.03.001]
[4]刘静平①,杨振欣②,赵懿明②,等.褐煤煤尘爆炸火焰传播特性及燃烧热分解机理研究[J].爆破器材,2022,51(06):16.[doi:10.3969/j.issn.1001-8352.2022.06.003]
 LIU Jingping,YANG Zhenxin,ZHAO Yiming,et al.Study on Flame Propagation Characteristics and Combustion Pyrolysis Mechanism of Lignite Dust Explosion[J].EXPLOSIVE MATERIALS,2022,51(02):16.[doi:10.3969/j.issn.1001-8352.2022.06.003]

备注/Memo

备注/Memo:
收稿日期:2014-08-24
基金项目:国防科工委基础产品创新计划火炸药科研专项
作者简介:陶俊(1987~),男,硕士,主要从事混合炸药研究。E-mail:taojun4712230@126.com
更新日期/Last Update: 2015-04-15