[1]MENIKOFF R. Pore collapse and hot spots in HMX [J]. AIP Conference Proceedings, 2004, 706(1): 393-396.
[2]DIENES J K, ZUO Q H, KERSHNER J D. Impact initiation of explosives and propellants via statistical crack mechanics [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(6): 1237-1275.
[3]MILNE A M, BOURNE N K. Experimental and numerical study of temperatures in cavity collapse [J]. AIP Conference Proceedings, 2002, 620(1): 914-917.
[4]YU C, PANDOLFI A, ORTIZ M, et al. Three-dimensional modeling of intersonic shear-crack growth in asymmetrically loaded unidirectional composite plates [J]. International Journal of Solids and Structures, 2002, 39(25): 6135-6157.
[5]ZHANG X, OSKAY C. Plastic dissipation sensitivity to mechanical properties in polycrystalline β-HMX subjected to impact loading [J]. Mechanics of Materials, 2019, 138: 103079.
[6]赵东, 屈可朋, 董泽霖. 凝聚相炸药损伤-点火特性的研究进展[J]. 爆破器材, 2024, 53(3): 1-9, 16.
ZHAO D, QU K P, DONG Z L. Research progress on damage and ignition characteristics of condensed phase explosives [J]. Explosive Materials, 2024, 53(3): 1-9, 16.
[7]DUARTE C A, HAMED A, DRAKE J D, et al. Void collapse in shocked-HMX single crystals: simulations and experiments [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(2): 243-253.
[8]ESCAURIZA E M, DUARTE J P, CHAPMAN D J, et al. Collapse dynamics of spherical cavities in a solid under shock loading [J]. Scientific Reports, 2020, 10(1): 8455.
[9]JIANG C, CAI S, MAO L, et al. Effect of porosity on dynamic mechanical properties and impact response characteristics of high aluminum content PTFE/Al energetic materials [J]. Materials, 2020, 13(1): 140.
[10]AUSTIN R A, BARTON N R, REAUGH J E, et al. Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal [J]. Journal of Applied Physics, 2015, 117(18): 185902.
[11]NELMS M D, KROONBLAWD M P, AUSTIN R A. Pore collapse in single-crystal TATB under shock compression [J]. AIP Conference Proceedings, 2020, 2272(1): 050001.
[12]WANG X J, DUAN Z L, BAI Z L, et al. Crystal-scale modelling of pore collapse in cyclotetramethylene tetranitramine (HMX) under different shock strengths [J]. Mechanics of Materials, 2022, 174: 104457.
[13]EASON R M, SEWELL T D. Molecular dynamics simulations of the collapse of a cylindrical pore in the energetic material α-RDX [J]. Journal of Dynamic Behavior of Materials, 2015, 1(4): 423-438.
[14]GALITSKIY S, MISHRA A, DONGARE A M. Modeling shock-induced void collapse in single-crystal Ta systems at the mesoscales [J]. International Journal of Plasticity, 2023, 164: 103596.
[15]钟凯, 刘建, 王林元, 等. 含能材料中“热点”的理论模拟研究进展[J]. 含能材料, 2018, 26(1): 11-20.
ZHONG K, LIU J, WANG L Y, et al. Lssue of ‘hot-spot’ in energetic materials: recent progress of modeling and calculations [J]. Chinese Journal of Energetic Materials, 2018, 26(1): 11-20.
[16]田占东, 张震宇. PBX-9404炸药冲击起爆细观反应速率模型[J]. 含能材料, 2007, 15(5): 464-467.
TIAN Z D, ZHANG Z Y. A mesomechanic model of shock initiation in PBX-9404 explosive[J]. Chinese Journal of Energetic Materials, 2007, 15(5): 464-467.
[17]成丽蓉, 施惠基, 贺元吉, 等. 复杂受力环境下非均质炸药孔洞塌缩热点生成机理[J]. 含能材料, 2016, 24(2): 171-176.
CHENG L R, SHI H J, HE Y J, et al. Hot-spot forming mechanism of holes collapse in heterogeneous solid explosives under complicated stress environment[J]. Chinese Journal of Energetic Materials, 2016, 24(2): 171-176.
[18]LI X, FENG Z, LIU J. An analytic investigation of “hot-spot” formation in compressible energetic materials [J]. Central European Journal of Energetic Materials, 2017, 14(4): 806-820.
[19]覃锦程, 裴红波, 李星翰, 等. 弹黏塑性热点模型的冲击起爆临界条件[J]. 高压物理学报, 2018, 32(3): 115-120.
QIN J C, PEI H B, LI X H, et al. Shock initiation thresholds of heterogeneous explosives with elastic-visco-plastic hot spot model[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 115-120.
[20]温丽晶, 段卓平, 张震宇, 等. 弹粘塑性双球壳塌缩热点反应模型[J]. 高压物理学报, 2011, 25(6): 493-500.
WEN L J, DUAN Z P, ZHANG Z Y, et al. A elastic/viscoplastic pore collapse model of double-layered hollow sphere for hot-spot ignition in shocked explosives[J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 493-500.
[21]BAI Z, DUAN Z, WEN L, et al. Embedded manganin gauge measurements and modeling of shock initiation in HMX-based PBX explosives with different particle sizes and porosities[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(6): 908-920.
[22]YANG Y, DUAN Z P, LI S R, et al. A new ignition-growth reaction rate model for shock initiation [J]. Defence Technology, 2023, 23(5): 126-136.
[23]KAPAHI A, UDAYKUMAR H S. Dynamics of void collapse in shocked energetic materials: physics of void-void interactions[J]. Shock Waves, 2013, 23(6): 537-558.
[24]KAPAHI A, UDAYKUMAR H S. Three-dimensional simulations of dynamics of void collapse in energetic materials [J]. Shock Waves, 2015, 25(2): 177-187.
[25]王洪波, 王旗华, 卢永刚, 等. PBX炸药细观孔洞缺陷对其冲击点火特性的影响[J]. 火炸药学报, 2015, 38(5): 31-36.
WANG H B, WANG Q H, LU Y G, et al. Effect of meso-defect holes on the shock-to ignition characteristics of PBX explosives [J]. Chinese Journal of Explosives & Propellants, 2015, 38(5): 31-36.
[26]王新征, 张松林, 张庆明, 等. 铝热剂反应性冲击热点分析[J]. 高压物理学报, 2012, 26(6): 665-673.
WANG X Z, ZHANG S L, ZHANG Q M, et al. Analysis of reactive hot spot for thermite under shock waves[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 665-673.
[27]黄炳耀, 白桥栋, 王茂杰, 等. 累积损伤对B炸药冲击起爆影响的仿真研究[J]. 爆破器材, 2024, 53(2): 13-21.
HUANG B Y, BAI Q D, WANG M J, et al. Simulation study on the effect of cumulative damage on the shock initiation of composition B [J]. Explosive Materials, 2024, 53(2): 13-21.
[28]BASSETT W P, JOHNSON B P, NEELAKANTAN N K, et al. Shock initiation of explosives: high temperature hot spots explained[J]. Applied Physics Letters, 2017, 111(6): 061902.
[29]LITTLEFIELD D L, ANDERSON C E, PARTOM Y, et al. The penetration of steel targets finite in radial extent[J]. International Journal of Impact Engineering, 1997, 19(1): 49-62.
[30]尚海林, 赵锋, 王文强, 等. 冲击作用下炸药热点形成的3维离散元模拟[J]. 爆炸与冲击, 2010, 30(2): 131-137.
SHANG H L, ZHAO F, WANG W Q, et al. Threedimensional discrete element simulation of hot spots in explosives under shock loading [J]. Explosion and Shock Waves, 2010, 30(2): 131-137.