[1]王茂杰,白桥栋,韩家祥,等.Comp.B炸药孔洞塌缩及热点生成的数值模拟[J].爆破器材,2025,54(02):21-28.[doi:10.3969/j.issn.1001-8352.2025.02.003]
 WANG Maojie,BAI Qiaodong,HAN Jiaxiang,et al.Numerical Simulation of Pore Collapse and Hot Spot Generation in Comp.B Explosives[J].EXPLOSIVE MATERIALS,2025,54(02):21-28.[doi:10.3969/j.issn.1001-8352.2025.02.003]
点击复制

Comp.B炸药孔洞塌缩及热点生成的数值模拟
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
54
期数:
2025年02
页码:
21-28
栏目:
基础理论
出版日期:
2025-04-07

文章信息/Info

Title:
Numerical Simulation of Pore Collapse and Hot Spot Generation in Comp.B Explosives
文章编号:
5995
作者:
王茂杰白桥栋韩家祥王进平贺全彪
南京理工大学瞬态物理全国重点实验室(江苏南京,210094)
Author(s):
WANG Maojie BAI Qiaodong HAN Jiaxiang WANG Jinping HE Quanbiao
National Key Lab of Transient Physics, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
Comp.B炸药孔洞塌缩机制热点
Keywords:
Comp. B explosive pore collapse mechanism hot spot
分类号:
TQ560.1
DOI:
10.3969/j.issn.1001-8352.2025.02.003
文献标志码:
A
摘要:
炸药内部孔洞塌缩机制是热点生成的主要机制。采用点火增长模型,使用S-ALE算法,在Comp.B炸药中添加微孔洞结构,研究孔洞的存在和孔洞大小对炸药起爆的影响,分析孔洞塌缩和热点生成过程。结果表明,孔洞的存在使炸药内部更容易产生热点,孔洞塌缩过程形成了微射流,微射流冲击孔洞下游内壁面,动能转化为内能,造成能量局部化,导致热点的形成。塌缩过程中,粒子速度达到7 936 m/s,最高温度接近6 000 K。初始孔洞大小决定热点的大小,孔洞越大,热点尺寸越大;孔洞大小还会影响热点温度,小孔洞的温度升高更快,而大孔洞最终的热点温度更高。
Abstract:
The collapse mechanism of internal pores in explosives is the main mechanism for the generation of hotspots. The ignition and growth model was adopted, and the S-ALE algorithm was used. Micro-pore structures were added to Comp.B explosives to study the influence of the existence and size of pores on the initiation of explosives, and the processes of pore collapse and hot spot generation were analyzed. The results show that the existence of pores makes it easier to generate hot spots in explosives. During the pore collapse process, micro-jets are formed. The micro-jets impact the inner wall surface downstream of the pores, and the kinetic energy is converted into internal energy, resulting in energy localization and leading to the formation of hot spots. During the collapse process, the particle velocity reaches 7 936 m/s, and the maximum temperature is close to 6 000 K. The initial pore size determines the size of the hot spots. The larger the pores are, the larger the hot spots size will be. The pore size also affects the hot spot temperature. The temperature of small pores rises more rapidly, while the final hot spot temperature of large pores is higher.

参考文献/References:

[1]MENIKOFF R. Pore collapse and hot spots in HMX [J]. AIP Conference Proceedings, 2004, 706(1): 393-396.
[2]DIENES J K, ZUO Q H, KERSHNER J D. Impact initiation of explosives and propellants via statistical crack mechanics [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(6): 1237-1275.
[3]MILNE A M, BOURNE N K. Experimental and numerical study of temperatures in cavity collapse [J]. AIP Conference Proceedings, 2002, 620(1): 914-917.
[4]YU C, PANDOLFI A, ORTIZ M, et al. Three-dimensional modeling of intersonic shear-crack growth in asymmetrically loaded unidirectional composite plates [J]. International Journal of Solids and Structures, 2002, 39(25): 6135-6157.
[5]ZHANG X, OSKAY C. Plastic dissipation sensitivity to mechanical properties in polycrystalline β-HMX subjected to impact loading [J]. Mechanics of Materials, 2019, 138: 103079.
[6]赵东, 屈可朋, 董泽霖. 凝聚相炸药损伤-点火特性的研究进展[J]. 爆破器材, 2024, 53(3): 1-9, 16.
ZHAO D, QU K P, DONG Z L. Research progress on damage and ignition characteristics of condensed phase explosives [J]. Explosive Materials, 2024, 53(3): 1-9, 16.
[7]DUARTE C A, HAMED A, DRAKE J D, et al. Void collapse in shocked-HMX single crystals: simulations and experiments [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(2): 243-253.
[8]ESCAURIZA E M, DUARTE J P, CHAPMAN D J, et al. Collapse dynamics of spherical cavities in a solid under shock loading [J]. Scientific Reports, 2020, 10(1): 8455.
[9]JIANG C, CAI S, MAO L, et al. Effect of porosity on dynamic mechanical properties and impact response characteristics of high aluminum content PTFE/Al energetic materials [J]. Materials, 2020, 13(1): 140.
[10]AUSTIN R A, BARTON N R, REAUGH J E, et al. Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal [J]. Journal of Applied Physics, 2015, 117(18): 185902.
[11]NELMS M D, KROONBLAWD M P, AUSTIN R A. Pore collapse in single-crystal TATB under shock compression [J]. AIP Conference Proceedings, 2020, 2272(1): 050001.
[12]WANG X J, DUAN Z L, BAI Z L, et al. Crystal-scale modelling of pore collapse in cyclotetramethylene tetranitramine (HMX) under different shock strengths [J]. Mechanics of Materials, 2022, 174: 104457.
[13]EASON R M, SEWELL T D. Molecular dynamics simulations of the collapse of a cylindrical pore in the energetic material α-RDX [J]. Journal of Dynamic Behavior of Materials, 2015, 1(4): 423-438.
[14]GALITSKIY S, MISHRA A, DONGARE A M. Modeling shock-induced void collapse in single-crystal Ta systems at the mesoscales [J]. International Journal of Plasticity, 2023, 164: 103596.
[15]钟凯, 刘建, 王林元, 等. 含能材料中“热点”的理论模拟研究进展[J]. 含能材料, 2018, 26(1): 11-20.
ZHONG K, LIU J, WANG L Y, et al. Lssue of ‘hot-spot’ in energetic materials: recent progress of modeling and calculations [J]. Chinese Journal of Energetic Materials, 2018, 26(1): 11-20.
[16]田占东, 张震宇. PBX-9404炸药冲击起爆细观反应速率模型[J]. 含能材料, 2007, 15(5): 464-467.
TIAN Z D, ZHANG Z Y. A mesomechanic model of shock initiation in PBX-9404 explosive[J]. Chinese Journal of Energetic Materials, 2007, 15(5): 464-467.
[17]成丽蓉, 施惠基, 贺元吉, 等. 复杂受力环境下非均质炸药孔洞塌缩热点生成机理[J]. 含能材料, 2016, 24(2): 171-176.
CHENG L R, SHI H J, HE Y J, et al. Hot-spot forming mechanism of holes collapse in heterogeneous solid explosives under complicated stress environment[J]. Chinese Journal of Energetic Materials, 2016, 24(2): 171-176.
[18]LI X, FENG Z, LIU J. An analytic investigation of “hot-spot” formation in compressible energetic materials [J]. Central European Journal of Energetic Materials, 2017, 14(4): 806-820.
[19]覃锦程, 裴红波, 李星翰, 等. 弹黏塑性热点模型的冲击起爆临界条件[J]. 高压物理学报, 2018, 32(3): 115-120.
QIN J C, PEI H B, LI X H, et al. Shock initiation thresholds of heterogeneous explosives with elastic-visco-plastic hot spot model[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 115-120.
[20]温丽晶, 段卓平, 张震宇, 等. 弹粘塑性双球壳塌缩热点反应模型[J]. 高压物理学报, 2011, 25(6): 493-500.
WEN L J, DUAN Z P, ZHANG Z Y, et al. A elastic/viscoplastic pore collapse model of double-layered hollow sphere for hot-spot ignition in shocked explosives[J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 493-500.
[21]BAI Z, DUAN Z, WEN L, et al. Embedded manganin gauge measurements and modeling of shock initiation in HMX-based PBX explosives with different particle sizes and porosities[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(6): 908-920.
[22]YANG Y, DUAN Z P, LI S R, et al. A new ignition-growth reaction rate model for shock initiation [J]. Defence Technology, 2023, 23(5): 126-136.
[23]KAPAHI A, UDAYKUMAR H S. Dynamics of void collapse in shocked energetic materials: physics of void-void interactions[J]. Shock Waves, 2013, 23(6): 537-558.
[24]KAPAHI A, UDAYKUMAR H S. Three-dimensional simulations of dynamics of void collapse in energetic materials [J]. Shock Waves, 2015, 25(2): 177-187.
[25]王洪波, 王旗华, 卢永刚, 等. PBX炸药细观孔洞缺陷对其冲击点火特性的影响[J]. 火炸药学报, 2015, 38(5): 31-36.
WANG H B, WANG Q H, LU Y G, et al. Effect of meso-defect holes on the shock-to ignition characteristics of PBX explosives [J]. Chinese Journal of Explosives & Propellants, 2015, 38(5): 31-36.
[26]王新征, 张松林, 张庆明, 等. 铝热剂反应性冲击热点分析[J]. 高压物理学报, 2012, 26(6): 665-673.
WANG X Z, ZHANG S L, ZHANG Q M, et al. Analysis of reactive hot spot for thermite under shock waves[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 665-673.
[27]黄炳耀, 白桥栋, 王茂杰, 等. 累积损伤对B炸药冲击起爆影响的仿真研究[J]. 爆破器材, 2024, 53(2): 13-21.
HUANG B Y, BAI Q D, WANG M J, et al. Simulation study on the effect of cumulative damage on the shock initiation of composition B [J]. Explosive Materials, 2024, 53(2): 13-21.
[28]BASSETT W P, JOHNSON B P, NEELAKANTAN N K, et al. Shock initiation of explosives: high temperature hot spots explained[J]. Applied Physics Letters, 2017, 111(6): 061902.
[29]LITTLEFIELD D L, ANDERSON C E, PARTOM Y, et al. The penetration of steel targets finite in radial extent[J]. International Journal of Impact Engineering, 1997, 19(1): 49-62.
[30]尚海林, 赵锋, 王文强, 等. 冲击作用下炸药热点形成的3维离散元模拟[J]. 爆炸与冲击, 2010, 30(2): 131-137.
SHANG H L, ZHAO F, WANG W Q, et al. Threedimensional discrete element simulation of hot spots in explosives under shock loading [J]. Explosion and Shock Waves, 2010, 30(2): 131-137.

备注/Memo

备注/Memo:
收稿日期:2024-12-04
第一作者:王茂杰(1997—),男,硕士研究生,研究方向为爆轰理论与应用。E-mail: wangmj@njust.edu.cn
通信作者:白桥栋(1979—),男,研究员,研究方向为爆轰理论与应用。E-mail: baiqdnj@njust.edu.cn
更新日期/Last Update: 2025-04-07