[1]王欣雨①,彭智华①,顾玉乐①,等.响应面法优化球扁药脱硝工艺研究[J].爆破器材,2025,54(01):28-35.[doi:10.3969/j.issn.1001-8352.2025.01.005]
 WANG Xinyu,PENG Zhihua,GU Yule,et al.Optimization of Denitration Process of Spherical Gun Propellant by Response Surface Method[J].EXPLOSIVE MATERIALS,2025,54(01):28-35.[doi:10.3969/j.issn.1001-8352.2025.01.005]
点击复制

响应面法优化球扁药脱硝工艺研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
54
期数:
2025年01
页码:
28-35
栏目:
爆炸材料
出版日期:
2025-01-09

文章信息/Info

Title:
Optimization of Denitration Process of Spherical Gun Propellant by Response Surface Method
文章编号:
5985
作者:
王欣雨彭智华顾玉乐范红蕾李世影②③李纯志王晓倩肖忠良②③吴晓青
①中北大学化学与化工学院(山西太原,030051)
②南京理工大学化学与化工学院(江苏南京,210094)
③南京理工大学特种能源材料教育部重点实验室(江苏南京,210094)
④泸州北方化学工业有限公司(四川泸州,646003)⑤驻太原地区防化军代室(山西太原,030000)
Author(s):
WANG Xinyu PENG Zhihua GU Yule FAN Honglei LI Shiying②③ LI Chunzhi WANG Xiaoqian XIAO Zhongliang②③ WU Xiaoqing
① School of Chemistry and Chemical Engineering, North University of China (Shanxi Taiyuan, 030051)
② School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
③ Key Laboratory of Special Energy Materials, Ministry of Education, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
④ Luzhou North Chemical Industries Co., Ltd. (Sichuan Luzhou, 646003)
⑤ Defense Military Office in Taiyuan Area (Shanxi Taiyuan, 030000)
关键词:
梯度硝基球扁药响应面法脱硝反应工艺优化爆热燃烧渐增性
Keywords:
nitro gradiently distributed spherical gun propellant response surface methodology denitration reation process optimization explosion heat combustion progressivity
分类号:
TQ560.6; TJ55
DOI:
10.3969/j.issn.1001-8352.2025.01.005
文献标志码:
A
摘要:
为探索工艺参数对球扁药脱硝反应的影响规律,利用响应面法的Box-Behnken设计优化球扁药脱硝工艺。在单因素实验基础上,分析了脱硝剂质量分数、反应温度和反应时间对梯度硝基球扁药爆热的影响;利用显微拉曼技术研究了梯度硝基球扁药的微观结构组成;并采用密闭爆发器实验对脱硝前、后球扁药的定容燃烧性能进行研究。单因素实验和响应面法优化结果均表明,影响梯度硝基球扁药性能的工艺参数主次顺序为:反应温度、反应时间、脱硝剂质量分数。通过响应面法建立的脱硝工艺参数与梯度硝基球扁药爆热之间的模型相关系数为0.978 5,且实验验证所得爆热与响应面模型预测的爆热基本吻合,表明优化得到的响应面模型具有可靠性和有效性。拉曼表征结果表明,梯度硝基球扁药表层硝酸酯基的分布由表及里呈梯度递增趋势。通过调节工艺参数,使得梯度硝基球扁药的爆热和燃烧渐增性大范围可控,为梯度硝基球扁药性能的精准调控提供了技术和理论支持。
Abstract:
To explore the influence of process parameters on the denitration reaction of spherical gun propellant, Box-Behnken response surface methodology was used to optimize the denitration process of spherical gun propellant. On the basis of single factor experiments, the effects of denitration agent concentration, reaction temperature, and reaction time on explosion heat of nitro gradiently distributed spherical gun propellant were analyzed. The microstructure composition of nitro gradiently distributed spherical gun propellant was studied using micro Raman technology. The constant-volume combustion performance of nitro gradiently distributed spherical gun propellant before and after denitriation was investigated using a closed bomb test. The results of single-factor experiments and response surface methodology optimization both indicate that the primary and secondary process parameters affecting the performance of nitro gradiently distributed spherical gun propellant are reaction temperature, reaction time, and denitration agent concentration. The correlation coefficient between denitration process parameters established by response surface methodology and the explosion heat of nitro gradiently distributed spherical gun propellant is 0.978 5. The explosion heat obtained from experiment is basically consistent with the explosion heat predicted by the response surface model, indicating that the optimized response surface model is reliable and effective. Raman characterization results indicate that the distribution of nitrate ester groups on the surface of nitro gradiently distri-buted spherical gun propellant shows an increasing gradient from the surface to the interior. After adjusting the process parameters, the explosive heat and combustion progressivity of nitro gradiently distributed spherical gun propellant could be controlled over a large range. It provids technical and theoretical supports for the precise control of the performance of nitro gradiently distributed spherical gun propellant.

参考文献/References:

[1]肖忠良, 丁亚军, 李世影, 等. 发射药表层梯度硝基裁剪方法与效应[J]. 中国材料进展, 2022, 41(2): 92-97.
XIAO Z L, DING Y J, LI S Y, et al. Gradient tailoring method and effect of nitro gradiently distributed propellant[J]. Materials China, 2022, 41(2): 92-97.
[2]李世影, 丁亚军, 梁昊, 等. 梯度硝基发射药的设计原理与实现方法[J]. 兵工学报, 2020, 41(11): 2198-2205.
LI S Y, DING Y J, LIANG H, et al. Design principle and realizable approach of nitro gradiently distributed propellant [J]. Acta Armamentarii, 2020, 41(11): 2198-2205.
[3]LI S Y, LI Y, DING Y J, et al. One-step green method to prepare progressive burning gun propellant through gradient denitration strategy[J]. Defence Technology, 2023, 22(4): 135-143.
[4]史莹, 范红蕾, 任欣, 等. 梯度硝基球扁药中NG的扩散及对燃烧性能的影响[J]. 火工品, 2022, 44(2): 43-47.
SHI Y, FAN H L, REN X, et al. Diffusion of NG in nitro gradiently dstributed spherical pellets and its influence on combustion performance [J]. Initiators & Pyrotechnics, 2022, 44(2): 43-47.
[5]OSCAR G, JUAN P, MANUEL M, et al. Validation of DOE factorial/taguchi/surface response models of mechanical properties of synthetic and natural fiber reinforced epoxy matrix hybrid material [J]. Polymers, 2024, 16: 2051.
[6]KARAMBEIGI M S, HASAN-ZADEH A, MOHAMMAD S K. Multi-objective optimization of petroleum engineering problems using a hybrid workflow: combination of particle swarm optimization, fuzzy logic, imperialist competitive algorithm and response surface methodology [J]. Geoenergy Science and Engineering, 2023, 224: 211579.
[7]BOUBLIA A, LEBOUACHERA S E I, HADDAOUI N, et al. State-of-the-art review on recent advances in polymer engineering: modeling and optimization through response surface methodology approach[J]. Polymer Bulletin, 2023, 80: 5999-6031.
[8]ASANJARANI N, BAGTASH M, ZOLGHARNEIN J. A comparison between Box-Behnken design and artificial neural network: modeling of removal of Phenol Red from water solutions by nanocobalt hydroxide [J]. Journal of Chemometrics, 2020, 34(9): e3283.
[9]HASSANI A, EGHBALI P, METIN . Sonocatalytic removal of methylene blue from water solution by cobalt ferrite/mesoporous graphitic carbon nitride (CoFe2O4/mpg-C3N4) nanocomposites: response surface methodology approach [J]. Environmental Science and Pollution Research, 2018, 25(32): 32140-32155.
[10]RANA A G, MINCEVA M. Analysis of photocatalytic degradation of phenol with exfoliated graphitic carbon nitride and light-emitting diodes using response surface methodology [J]. Catalysts, 2021, 11(8): 898.
[11]QIAO D L, HU B, GAN D, et al. Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from Hyriopsis cumingii [J]. Carbohydrate Polymers, 2009, 76(3): 422-429.
[12]CUI F, FAN H L, LI S Y, et,al. Kinetic model for denitration reaction process of cylindrical single-base gun propellant [J]. ACS Omega, 2023, 8(48): 46197-46204.
[13]崔璠, 范红蕾, 李世影, 等. 梯度硝基单基发射药构筑过程的Avrami模型[J/OL]. 兵工学报, 2024. http://www.co-journal.com/CN/article/advanced-Search-Result.do.DOI: 10.12382/bgxb.2023.1190.
CUI F, FAN H L, LI S Y, et al. Avrami model for the construction process of nitro gadiently distributed single base propellant [J/OL]. Acta Armamentarii, 2024. http://www.co-journal.com/CN/article/advanced-Search-Result.do.DOI: 10.12382/bgxb.2023.1190.
[14]中国兵器工业集团公司. 火药试验方法: GJB 770B—2005 [S]. 北京: 国防科工委军标出版发行部, 2005.
China North Industries Group Co., Ltd. Test method of propellant: GJB 770B—2005 [S]. Beijing: Armament Standard Publication Department of COSTIND, 2005.
[15]孙金梦. 鱼蛋白胶芒果糕的研发及工厂设计[D]. 南昌: 南昌大学, 2022.
SUN J M. Development and factory design of fish protein gelatin mango cake [D]. Nanchang: Nanchang University, 2022.
[16]王琼林, 赵小锋, 刘少武, 等. 一种基于密闭爆发器试验的发射药燃烧渐增性定量评价方法[J]. 火炸药学报, 2009, 32(3): 71-74.
WANG Q L, ZHAO X F, LIU S W, et al. A quantitative assessment method of gun propellant combustion progressivity based on closed bomb test [J]. Chinese Journal of Explosives & Propellants, 2009, 32(3): 71-74.
[17]郑启龙, 田书春, 周伟良, 等. GAP基聚氨酯包覆单基发射药能量与燃烧性能[J]. 含能材料, 2016, 24(8): 787-792.
ZHENG Q L, TIAN S C, ZHOU W L, et al. Energy and combustion properties of the GAP-base polyurethane coated single-base propellants [J]. Chinese Journal of Energetic Materials, 2016, 24(8): 787-792.

相似文献/References:

[1]马汉翔,毛浩清,张军,等.梧桐树粉尘爆炸特性研究[J].爆破器材,2017,46(06):17.[doi:10.3969/j.issn.1001-8352.2017.06.004]
 MA Hanxiang,MAO Haoqing,ZHANG Jun,et al.Explosion Characteristics of Chinese Parasol Tree Dust[J].EXPLOSIVE MATERIALS,2017,46(01):17.[doi:10.3969/j.issn.1001-8352.2017.06.004]
[2]石腾飞①,陈明华②,葛强②,等.RDX/Al/AP/HTPB炸药回收过程中AP提取工艺的响应面法优化[J].爆破器材,2018,47(01):54.[doi:10.3969/j.issn.1001-8352.2018.01.010]
 SHI Tengfei,CHEN Minghua,GE Qiang,et al.Optimization of AP Extraction Process by Response Surface Method in Recovery of the RDX/Al/AP/HTPB Explosive[J].EXPLOSIVE MATERIALS,2018,47(01):54.[doi:10.3969/j.issn.1001-8352.2018.01.010]
[3]肖磊①,张黎明②,高向东③,等.超细HMX的真空冷冻干燥工艺优化及性能表征[J].爆破器材,2021,50(06):21.[doi:10.3969/j.issn.1001-8352.2021.06.004]
 XIAO Lei,ZHANG Liming,GAO Xiangdong,et al.Process Optimization and Properties of Superfine HMX Prepared by Vacuum Freeze-Drying Technology[J].EXPLOSIVE MATERIALS,2021,50(01):21.[doi:10.3969/j.issn.1001-8352.2021.06.004]

备注/Memo

备注/Memo:
收稿日期:2024-11-18
基金项目:国家自然科学青年基金(22205111)
第一作者:王欣雨(2001—),女,硕士,主要从事含能材料的制备及性能调控研究。E-mail:yinghuaw2022@163.com
通信作者:范红蕾(1985—),女,副教授,硕导,主要从事含能材料的制备及性能调控研究。E-mail:fanhonglei@nuc.edu.cn
更新日期/Last Update: 2025-01-10