[1]杨权中, 范宝春, 杨崇惠. 带隔板装药中爆轰波的相互作用[J]. 南京理工大学学报(自然科学版), 1982(2): 23-30.YANG Q Z, FAN B C, YANG C H. Interaction of the detonation waves in the explosive charge with the inserter[J]. Journal of Nanjing University of Science and Technology, 1982(2): 23-30.
[2]潘建, 张先锋, 何勇, 等. 带隔板装药爆轰波马赫反射理论研究和数值模拟[J]. 爆炸与冲击, 2016, 36(4): 449-456.
PAN J, ZHANG X F, HE Y, et al. Theoretical and numerical study on detonation wave Mach reflection in high explosive charge with waveshaper[J]. Explosion and Shock Waves, 2016, 36(4): 449-456.
[3]刘洪榕, 胡立双, 胡双启, 等. 多点同步起爆环形传爆药柱数值模拟研究[J]. 爆破, 2013, 30(4): 129-132.
LIU H R, HU L S, HU S Q, et al. Study of annular booster pellet under multi-point synchronous initiation by numerical simulation [J]. Blasting, 2013, 30(4): 129-132.
[4]赵长啸, 龙源, 纪冲, 等. 多点起爆下药型罩表面压力分布规律研究[J]. 高压物理学报, 2013, 27(1): 83-89.
ZHAO C X, LONG Y, JI C, et al. Distribution law of pressure on liner surface under multi-point initiation [J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 83-89.
[5]LI W B, WANG X M, LI W B. The effect of annular multi-point initiation on the formation and penetration of an explosively formed penetrator [J]. International Journal of Impact Engineering, 2010, 37(4): 414-424.
[6]沈飞, 王辉, 罗一鸣. 一种同轴双元组合装药的爆轰波形及驱动性能[J]. 火炸药学报, 2018, 41(6): 588-593.
SHEN F, WANG H, LUO Y M. Detonation waveform and driving performance of a kind of coaxial binary composite charge [J]. Chinese Journal of Explosives & Propellants, 2018, 41(6): 588-593.
[7]ZHANG X F, HUANG Z X, QIAO L. Detonation wave propagation in double-layer cylindrical high explosive charges[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(3): 210-218.
[8]缪玉松, 郭建, 陈翔, 等. 矿用条形药包轴向爆轰波碰撞聚能特性研究[J]. 金属矿山, 2022(7): 113-119.
MIAO Y S, GUO J, CHEN X, et al. Study on propagation characteristics of axial detonation wave of mining linear charges [J]. Metal Mine, 2022(7): 113-119.
[9]MIAO Y S, LI X J, KONG L, et al. Study on the symmetric bilinear initiating technique of deep-hole boulder blasting in the TBM tunnel excavation[J]. Tunnelling and Underground Space Technology, 2021, 111: 103871.
[10]DUNNE B B. Mach reflection of detonation waves in condensed high explosives [J]. Physics of Fluids, 1961, 4(7): 918-924.
[11]DUNNE B B. Mach reflection of detonation waves in condensed high explosives. II [J]. Physics of Fluids, 1964, 7(10): 1707-1712.
[12]DUNNE B B. Mach reflection of 700 kBar shock waves in gases [J]. Physics of Fluids, 1961, 4(12): 1565-1566.
[13]MULLER F. Mach-reflection of detonation waves in condensed high explosives[J]. Propellants, Explosives, Pyrotechnics, 1978, 3(4): 115-118.
[14]汤明钧, 杨权中, 阎秀华. 破甲弹中爆轰波相互作用的初步研究[J]. 南京理工大学学报(自然科学版), 1979(1): 145-156.
[15]范宝春, 杨权中, 杨崇惠. 轴对称爆轰波的传播和相互作用[J]. 爆炸与冲击, 1984, 4(1): 68-78.
FAN B C, YANG Q Z, YANG C H. The propagation and interactions of axisymmetric detonation waves[J]. Explosion and Shock Waves, 1984, 4(1): 68-78.
[16]HULL L M. Mach reflection of spherical detonation waves[C]//Tenth International Detonation Symposium. Boston, MA, US, 1993.
[17]刘举鹏, 蔡瑞娇, 陈福梅. 硅炸药内双爆轰波相互作用的实验研究[J]. 北京理工大学学报, 1993, 13(2): 198-202.
LIU J P, CAI R J, CHEN F M. Experimental research on the double detonation wave interaction in silicone rubber explosives[J]. Journal of Beijing Institute of Technology, 1993, 13(2): 198-202.
[18]缪玉松, 李晓杰, 闫鸿浩, 等. 爆轰波碰撞聚能效应及其数值分析[J]. 工程爆破, 2016, 22(5): 45-49.
MIAO Y S, LI X J, YAN H H, et al. Simulation analysis of detonation wave collision munroe effect [J]. Engineering Blasting, 2016, 22(5): 45-49.
[19]ZHANG K F, LIANG M Z, LU F Y, et al. Echanics of plate fracture from detonation wave interaction [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(2): 188-197.
[20]方涛, 梁民族, 李翔宇. 爆轰波叠加作用下金属杆条断裂行为分析[J]. 火炸药学报, 2020, 43(3): 303-307.
FANG T, LIANG M Z, LI X Y. Analysis of rod-fracture behavior under the effects of detonation wave interaction[J]. Chinese Journal of Explosives & Propellants, 2020, 43(3): 303-307.
[21]沈晓斌. 起爆方式对聚能射流特性影响数值模拟研究[J]. 火炮发射与控制学报, 2022, 43(3): 13-20.
SHEN X B. Numerical simulation of the influence of detonation modes on shaped charge jet characteristics[J]. Journal of Gun Launch & Control, 2022, 43(3): 13-20.
[22]ZHANG Q, JIAN H T, ZHENG G Q, et al. The interaction of detonation waves by multipoint initiation under smallsize charge condition[J]. Physics of Fluids, 2023, 35(11): 117105.
[23]TAN L H, REN Y X, WU Z N. Analytical and numerical study of the near flow field and shape of the Mach stem in steady flows [J]. Journal of Fluid Mechanics, 2005, 546: 341-362.
[24]CARDOSO D, TEIXEIRA-DIAS F. Modelling the formation of explosively formed projectiles (EFP)[J]. International Journal of Impact Engineering, 2016, 93: 116-127.
[25]段云, 熊代余, 李国仲, 等. 典型工业炸药爆炸灾害效应的数值模拟[J]. 河南理工大学学报(自然科学版), 2011, 30(4): 381-385.
DUAN Y, XIONG D Y, LI G Z, et al. Numerical simulation of disaster effects induced by typical industrial explosive explosion [J]. Journal of Henan Polytechnic University (Natural Science), 2011, 30(4): 381-385.
[26]李晓杰, 李瑞勇, 马玉磬, 等. 工业炸药线型聚能切割器的研制[J]. 工程爆破, 2004, 10(4): 5-7, 4.
LI X J, LI R Y, MA Y Q, et al. Development of a linear shaped charge loaded with an industrial explosive[J]. Engineering Blasting, 2004, 10(4): 5-7, 4.
[27]张宝銔, 张庆明, 黄风雷. 爆轰物理学[M]. 北京: 兵器工业出版社, 2001.
[28]李科斌. 炸药爆轰及驱动性能的连续电阻测试方法研究[D]. 大连: 大连理工大学, 2019.
LI K B. Research on continuous electric resistance testing method of detonation performance and driving characteristics of explosives [D]. Dalian: Dalian University of Technology, 2019.
[29]李明明, 李国新. 光纤在燃速及爆速测试中的应用[J]. 火工品, 2000(3): 13-16.
LI M M, LI G X. Application of optical fibers for measuring combustion and detonation velocities[J]. Initiators & Pyrotechnics, 2000(3): 13-16.