[1]程建华①,孟兵兵②,王辉①,等.大型激波管产生的长持时冲击波的特性研究[J].爆破器材,2024,53(05):13-20.[doi:10.3969/j.issn.1001-8352.2024.05.003]
 CHENG Jianhua,MENG Bingbing,WANG Hui,et al.Characteristics of Long Duration Shock Waves Generated by Large Shock Tubes[J].EXPLOSIVE MATERIALS,2024,53(05):13-20.[doi:10.3969/j.issn.1001-8352.2024.05.003]
点击复制

大型激波管产生的长持时冲击波的特性研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年05
页码:
13-20
栏目:
基础理论
出版日期:
2024-10-11

文章信息/Info

Title:
Characteristics of Long Duration Shock Waves Generated by Large Shock Tubes
文章编号:
5931
作者:
程建华孟兵兵王辉顿志林张新生郭帅房
①河南理工大学土木工程学院(河南焦作,454000)
②河南理工大学资源环境学院(河南焦作,454000)
Author(s):
CHENG Jianhua MENG Bingbing WANG Hui DUN Zhilin ZHANG Xinsheng GUO shuaifang
① School of Civil Engineering, He’nan Polytechnic University (He’nan Jiaozuo, 454000)
② School of Resources and Environment, Henan Polytechnic University (He’nan Jiaozuo, 454000)
关键词:
激波管长持时冲击波TNT预充高压气体
Keywords:
shock tube long duration shock wave TNT pre-filled high-pressure gas
分类号:
O383
DOI:
10.3969/j.issn.1001-8352.2024.05.003
文献标志码:
A
摘要:
为得到长持时冲击波,在大型激波管高压段2个位置预设TNT和预充高压气体,进行了压力测试,并得到了测点处的压力时程曲线;又采用ANSYS/LSDYNA软件对上述工况进行了数值仿真和参数校正;然后,对不同工况产生的冲击波特性进行仿真研究;最后,明确了不同装药位置、装药量、预充高压气体压力和泄压口长度对冲击波特性的影响。结果表明:当采用2处TNT装药,装药量和泄压口长度不变时,峰值超压和超压时长随着预充高压气体压力的增大而增大,峰值到达时间不一定降低;当预充高压气体压力和泄压口长度一定,2处TNT装药量增幅不大时,峰值超压和峰值到达时间会降低,但超压时间增加;同时增加TNT装药量和预充高压气体压力,会提高峰值超压,但对超压时长的影响不明显;当TNT装药位置为1个,装药量和泄压口长度一定时,预充高压气体压力增大会增加超压时长和峰值压力,与2处装药位置时规律一致,但冲击波的峰值到达时间降低;当其余条件不变时,减小泄压口长度会增加峰值超压压力,但是峰值到达时间却呈先减小、后增大的趋势。
Abstract:
In order to obtain long-duration shock waves, TNT and pre-filled high-pressure gas were pre-set at two positions in the high-pressure section of a large shock tube. Experiments were conducted and pressure time history curves were obtained at monitoring points. ANSYS/LS-DYNA software was used to calibrate the numerical simulation parameters of the above working conditions. Then, the characteristics of shock waves generated under different working conditions were simulated and studied. Finally, the effects of different charge positions, charge weights, pre-filled gas pressures, and length of the pressure relief port on the shock wave characteristics were clarified. The results indicate that when two TNT charges are used and the charge weight and the length of the pressure relief port remain unchanged, the peak overpressure and overpressure duration increase with the increase of pre-filled high-pressure gas pressure, and the peak overpressure arrival time does not necessarily decrease. When the pre-filled high-pressure gas pressure and the length of the pressure relief port are constant, and the increase in TNT charge at two locations is not significant, the peak overpressure and peak overpressure arrival time will decrease, but the overpressure time will increase. Simultaneously increasing TNT charge and pre-filled high-pressure gas will increase the peak overpressure, but the effect on the duration of overpressure is not significant. When TNT is placed at one location with constant TNT charge and length of the pressure relief port, an increase in pre-filled high-pressure gas pressure will increase the duration of overpressure and peak pressure, consistent with the pattern of two loading positions, but the peak overpressure arrival time will decrease. When all the other conditions remain constant, reducing the length of the pressure relief port will increase peak overpressure, but arrival time of peak overpressure exhibits a trend of first decreasing and then increasing.

参考文献/References:

[1]郭乙木, 杨庆大. 核爆炸条件下地冲击波传播的岩体阻尼研究[J]. 岩土力学, 1995(3): 55-61.
GUO Y M, YANG Q D. Study on rock damping in case of nuclear explosive wave propagation [J]. Rock and Soil Mechanics, 1995(3): 55-61.
[2]任辉启, 黄魁, 吴祥云, 等. 地面目标空气冲击波动压毁伤研究进展[J]. 防护工程, 2021, 43(1): 1-9.
REN H Q, HUANG K, WU X Y, et al. Research progress of dynamic pressure damage to ground targets by air shock wave [J]. Protective Engineering, 2021, 43(1): 1-9.
[3]任辉启, 王世合, 周松柏, 等. 大型爆炸波模拟装置研制及其应用[C]//第十六届全国激波与激波管学术会议论文集. 洛阳, 2014: 10-22.
REN H Q, WANG S H, ZHOU S B, et al. The development and application of large blast wave simulator [C]//The 16th National Conference on Shock Waves and Shock Tubes. Luoyang, 2014: 10-22.
[4]张军, 黄含军, 王军评, 等. 炸药驱动式爆炸管的载荷计算[J]. 装备环境工程, 2021, 18(5): 21-27.
ZHANG J, HUANG H J, WANG J P, et al. Simulation on the blast load inside the explosively drived shock tube[J]. Equipment Environmental Engineering, 2021, 18(5): 21-27.
[5]周岳兰, 裴鲁, 龙仁荣, 等. 激波管内压力脉冲演化特性及模拟空爆冲击波的方法研究[J]. 兵工学报, 2023, 44(12): 3815-3825.
ZHOU Y L, PEI L, LONG R R, et al. Study on the evolution characteristics of pressure pulse in shock tube and method of simulating air explosion shock wave [J]. Acta Armamentarii, 2023, 44(12): 3815-3825.
[6]张坤玉, 陈德, 吴昊. 高压气体驱动激波管的数值模拟与参数影响分析[J]. 高压物理学报, 2023, 37(3): 7-17.
ZHANG K Y, CHEN D, WU H. Numerical simulation and parametric analysis of high-pressure gas-driven shock tube [J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 7-17.
[7]汪维, 任辉启, 康冬丽, 等. 大型爆炸波模拟装置大气室多膜片驱动器驱动数值模拟研究[C]//第十六届全国激波与激波管学术会议. 洛阳, 2014: 605-612.
WANG W, REN H Q, KANG D L, et,al. Numerical simulation research of large blast wave simulator loaded by multiple diaphragm atmospheric chamber driver [C]//The 16th National Conference on Shock Waves and Shock Tubes. Luoyang, 2014: 605-612.
[8]何起光, 张伟, 陈小伟, 等. 激波管聚酯膜片变形过程分析[J]. 爆炸与冲击, 2019, 39(3): 33201.
HE Q G, ZHANG W, CHEN X W, et al. Analysis on the deformation process of PET shock tube diaphragm[J]. Explosion and Shock Waves, 2019, 39(3): 33201.
[9]郑监, 卢芳云, 陈荣. 柱形装药条件下锥形水中爆炸激波管内的冲击波特性[J]. 爆炸与冲击, 2021, 41(10): 75-86.
ZHENG J, LU F Y, CHEN R. Shock wave characteristics in a conical water explosion shock tube under cylindrical charge condition [J]. Explosion and Shock Waves, 2021, 41(10): 75-86.
[10]杨军, 薛斌. 激波管管长对阶跃压力波形的影响分析[J]. 振动与冲击, 2019, 38(3): 252-257.
YANG J, XUE B. Effects of shock tube length on step pressure waveform [J]. Journal of Vibration and Shock, 2019, 38(3): 252-257.
[11]STEWART J B. Approximating a free-field blast environment in the test section of an explosively driven conical shock tube [J]. Shock Waves, 2019, 29(2): 355-360.
[12]白世杰, 梁兴雨, 王昆. 用于激波增强的变截面激波管设计[J]. 燃烧科学与技术, 2023, 29(4): 406-413.
BAI S J, LIANG X Y, WANG K. Design of variable cross section for shock enhancement in shock tubes [J]. Journal of Combustion Science and Technology, 2023, 29(4): 406-413.
[13]康越, 张仕忠, 张远平, 等. 基于激波管评价的单兵头面部装备冲击波防护性能研究[J]. 爆炸与冲击, 2021, 41(8): 176-188.
KANG Y, ZHANG S Z, ZHANG Y P, et al. Research on anti-shockwave performance of the protective equipment for the head of a soldier based on shock tube evaluation [J]. Explosion and Shock Waves, 2021, 41(8): 176-188.
[14]蔡志华, 贺葳, 汪剑辉, 等. 爆炸波致颅脑损伤力学机制与防护综述[J]. 兵工学报, 2022, 43(2): 467-480.
CAI Z H, HE W, WANG J H, et al. Review on mechanical mechanism of blastinduced traumatic brain injury and protection technology [J]. Acta Armamentarii, 2022, 43(2): 467-480.
[15]LI Y, AOUDE H. Influence of steel fibers on the static and blast response of beams built with high-strength concrete and highstrength reinforcement[J]. Engineering Structures, 2020, 221: 111031.
[16]陈德, 吴昊, 徐世林, 等. 单向砌体填充墙激波管试验和动力行为分析[J]. 爆炸与冲击, 2023, 43(8): 134-152.
CHEN D, WU H, XU S L, et al. Shock tube tests and dynamic behavior analyses on one-way masonry-infilled walls [J]. Explosion and Shock Waves, 2023, 43(8): 134-152.
[17]田锐, 魏刚, 张涵哲, 等. 基于空气激波管的GFRP层合板抗爆性能研究[J]. 复合材料科学与工程, 2023(3): 68-75.
TIAN R, WEI G, ZHANG H Z, et al. Study of the blast resistance of GFRP laminates based on air shock tube [J]. Composites Science and Engineering, 2023(3): 68-75.
[18]宋浦, 杨凯, 梁安定, 等. 国内外TNT炸药的JWL状态方程及其能量释放差异分析[J]. 火炸药学报, 2013, 36(2): 42-45.
SONG P, YANG K, LIANG A D, et al. Difference analysis on JWL-EOS and energy release of different TNT charge[J]. Chinese Journal of Explosives & Propellants, 2013, 36(2): 42-45.

备注/Memo

备注/Memo:
收稿日期:2024-02-21
基金项目:国家自然科学基金重点项目(U1810203);国家自然科学基金(52178388);中铁十六局集团有限公司资助项目(H22541)
第一作者:程建华(1976—),男,副教授,主要从事安全技术与管理研究。E-mail: cheng15@hpu.edu.cn
通信作者:孟兵兵(1995—),男,博士,主要从事对煤层的动载荷改造研究。E-mail: meng123bingb@163.com
更新日期/Last Update: 2024-10-10