[1]王艳茹①,吴星亮①,吴三震①,等.HATO机械感度和热感度的影响因素研究[J].爆破器材,2024,53(05):28-37.[doi:10.3969/j.issn.1001-8352.2024.05.005]
 WANG Yanru,WU Xingliang,WU Sanzhen,et al.Study on the Influencing Factors on Mechanical Sensitivity and Thermal Sensitivity of HATO[J].EXPLOSIVE MATERIALS,2024,53(05):28-37.[doi:10.3969/j.issn.1001-8352.2024.05.005]
点击复制

HATO机械感度和热感度的影响因素研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年05
页码:
28-37
栏目:
爆炸材料
出版日期:
2024-10-11

文章信息/Info

Title:
Study on the Influencing Factors on Mechanical Sensitivity and Thermal Sensitivity of HATO
文章编号:
5923
作者:
王艳茹吴星亮吴三震熊友强方鸣坤国志静徐森①④
① 南京理工大学化学与化工学院(江苏南京,210094)
② 江西省赣华安全科技有限公司(江西南昌,330001)
③ 包头市公安局青山分局(内蒙古包头,014030)
④ 国家民用爆破器材质量检验检测中心(江苏南京,210094)
Author(s):
WANG Yanru WU Xingliang WU Sanzhen XIONG Youqiang FANG Mingkun GUO Zhijing XU Sen①④
① School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
② Jiangxi Ganhua Security Technology Co., Ltd. (Jiangxi Nanchang, 330001)
③ Qingshan Public Security Sub Bureau, Baotou Public Security Bureau (Inner Mongolia Baotou, 014030)
④ China National Quality Inspection and Testing Center for Industrial Explosive Materials (Jiangsu Nanjing, 210094)
关键词:
55’联四唑-11’-二氧二羟铵 (HATO)机械感度热感度粒度温度
Keywords:
dihydroxylammonium 55’-bistetrazole-11’-diolate (HATO) mechanical sensitivity thermal sensitivity particle size temperature
分类号:
TQ560.7
DOI:
10.3969/j.issn.1001-8352.2024.05.005
文献标志码:
A
摘要:
为了研究5,5’联四唑-1,1’二氧二羟铵(HATO)机械感度、热感度的影响因素,利用机械球磨法制备了4种不同粒度的HATO颗粒。利用激光粒度分析仪和扫描电子显微镜对HATO的粒度和表观形貌进行了表征;利用X射线衍射仪对HATO的晶体结构进行了表征;采用BAM撞击感度仪及BAM摩擦感度仪对不同粒度、不同温度HATO的撞击感度和摩擦感度进行了研究;采用差示扫描量热仪对不同粒度HATO的热分解情况进行了分析。结果表明:小粒度HATO的X射线衍射峰的位置与 HATO原料的保持一致,证明小粒度HATO的晶体结构没有发生改变。随着粒度的减小,HATO 的机械感度先升高、后降低。认为机械球磨法得到的小粒度HATO表面缺陷增多、结构完整性降低,受到外力作用时,样品内部的活性中心增多,提高了热点产生的概率。但随着粒度的进一步减小,HATO颗粒之间的孔穴及孔隙率也急剧减小,颗粒结构越来越密实,形状更加规则,减少了热点源和热点产生的机率。因此,当HATO粒度过小时,机械感度反而降低了。此外,随着温度的升高,HATO的机械感度增高,但撞击感度与摩擦感度随温度的变化规律并不相同。热感度方面,小颗粒HATO的起始分解温度提前,活化能减小,热稳定性降低。
Abstract:
In order to study the factors affecting the mechanical and thermal sensitivity of dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate (HATO), four kinds of HATO with different particle sizes were prepared using mechanical ball milling method. Particle size and apparent morphology of HATO were characterized using a laser particle size analyzer and a scanning electron microscope. Crystal structure of HATO was tested using an X-ray diffractometer. Impact sensitivity and friction sensitivity of HATO with different particle sizes at different temperatures were studied using BAM impact sensitivity meter and BAM friction sensitivity meter. Thermal decomposition characteristics were analyzed using a differential scanning calorimeter. Results indicate that the crystal structure of HATO with small particle size has not changed. As the particle size decreases, mechanical sensitivity of HATO first increases and then decreases. HATO with small particle size obtained by mechanical milling method has more surface defects, and its structural integrity decreases. When subjected to external forces, the number of active centers inside the sample increases, which increases the probability of hot spot genera the particle size further decreases, the pores and porosity between HATO particles also sharply decrease, and the particle structure becomes denser and more regular in shape, reducing the probability of hot spot sources and hot spot generation. Therefore, when HATO particles are too small, the mechanical sensitivity actually decreases. In addition, as the temperature increases, mechanical sensitivity of HATO increases, but the changes in impact sensitivity and friction sensitivity with temperature are not the same. Initial decomposition temperature of HATO with small particle size is advanced, the activation energy decreases, and the thermal stability decreases.

参考文献/References:

[1]FISCHER N, FISCHER D, KLAP-TKE T M, et al. Pushing the limits of energetic materials: the synthesis and characterization of dihydroxylammonium 5,5’-biste-trazole-1,1’-diolate [J]. Journal of Materials Chemistry, 2012, 22(38): 20418-20422.
[2]FISCHER N, KLAP-TKE T M, REYMANN M, et al. Nitrogen-rich salts of 1H,1-H-5,5’-bitetrazole-1,1’-diol: energetic materials with high thermal stability[J]. European Journal of Inorganic Chemistry, 2013, 2013(12): 2167-2180.
[3]苗成才, 吉应旭, 钱露, 等. 新型联四唑类含能材料 TKX-50 的研究进展[J]. 化学推进剂与高分子材料, 2015, 13(5): 7-12.
MIAO C C, JI Y X, QIAN L, et al. Research progress of novel bistetrazole-type energetic material TKX-50[J]. Chemical Propellants & Polymeric Materials, 2015, 13(5): 7-12.
[4]SINDITSKII V P, FILATOV S A, KOLESOV V I, et al. Combustion behavior and physico-chemical properties of dihydroxylammonium -5,5’-bistetrazole-1,1’-diolate (TKX-50)[J]. Thermochimica Acta, 2015, 614(1): 85-92.
[5]王永顺, 南海, 赵省向, 等. HATO 爆轰性能的理论计算[J]. 科学技术与工程, 2015, 15(13): 165-166.
WANG Y S, NAN H, ZHAO S X, et al. Calculation of detonation performance for HATO[J]. Science Technology and Engineering, 2015, 15(13): 165-166.
[6]毕福强, 付小龙, 邵重斌, 等. 高能单元推进剂 TKX-50 能量特性计算研究[J]. 化学推进剂与高分子材料, 2013, 11(5): 70-73.
BI F Q, FU X L, SHAO Z B, et al. Calculation of energy characteristics of high energy monopropellant TKX-50[J]. Chemical Propellants & Polymeric Materials, 2013, 11(5): 70-73.
[7]李猛, 赵凤起, 罗阳, 等. 含5,5’-联四唑-1,1’-二氧二羟铵推进剂的能量特性计算[J]. 含能材料, 2014, 22(3): 286-290.
LI M, ZHAO F Q, LUO Y, et al. Energetic characteristics computation of propellants containing dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate (TKX-50)[J]. Chinese Journal of Energetic Materials, 2014, 22(3): 286-290.
[8]MILLAR R W, PHILBIN S P, CLARIDGE R P, et al. Studies of novel heterocyclic insensitive high explosive compounds: pyridines, pyrimidines, pyrazines and their bicyclic analogues[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(2): 81-92.
[9]AN Q, CHENG T, GODDARD W A, et al. Anisotropic impact sensitivity and shock induced plasticity of TKX-50 (dihydroxylammonium 5,5’-bis(tetrazole)-1,1’-diolate) single crystals: from large-scale molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2015, 119(4): 2196-2207.
[10]HUANG H F, SHI Y M, YANG J, et al. Compatibility study of dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate (TKX-50) with some energetic materials and inert materials [J]. Journal of Energetic Materials, 2015, 33(1): 66-72.
[11]GOTTFRIED J L, KLAP-TKE T M, WITKOWSKI T G. Estimated detonation velocities for TKX-50, MAD-X1, BDNAPM, BTNPM, TKX-55, and DAAF using the laser-induced air shock from energetic materials technique [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(4): 353-359.
[12]JIAO F Y, ZHANG H R, LI W J, et al. Experimental and numerical study of the influence of initial temperature on explosion limits and explosion process of syngas-air mixtures[J]. International Journal of Hydrogen Energy, 2022, 47(52): 22261-22272.
[13]杨志剑, 刘晓波, 何冠松, 等. 混合炸药设计研究进展[J]. 含能材料, 2017, 25(1): 2-11.
YANG Z J, LIU X B, HE G S, et al. Advances in design and research of composite explosives [J]. Chinese Journal of Energetic Materials, 2017, 25(1): 2-11.
[14]孙锦山, 朱建士. 理论爆轰物理[M]. 北京: 国防工业出版社, 1995.
[15]BOWDEN F P, YOFFE A D. Initiation and growth of explosion in liquids and solids [M]. Cambridge, UK: Cambridge University Press, 1985.
[16]ZHU Q, XIAO C, LI S B, et al. Bioinspired fabrication of insensitive HMX particles with polydopamine coating[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(6): 1092-1097.
[17]钟凯, 刘建, 王林元, 等. 含能材料中“热点”的理论模拟研究进展[J]. 含能材料, 2018, 26(1): 11-20.
ZHONG K, LIU J, WANG L Y. Lssue of ‘hot-spot’ in energetic materials: recent progresses of modeling and calculations [J]. Chinese Journal of Energetic Materials, 2018, 26(1): 11-20.
[18]肖春, 祝青, 谢虓, 等. 湿法研磨制备改性 HMX 及其机械感度研究[J]. 火炸药学报, 2017, 40(1): 21-24.
XIAO C, ZHU Q, XIE X, et al. Modification of HMX particles by wet milling and study on its mechanical sensitivities [J]. Chinese Journal of Explosives & Propellants, 2017, 40(1): 21-24.
[19]王彩玲, 赵省向. 不同粒度 AP 的机械感度[J]. 火炸药学报, 2006, 29(6): 27-29.
WANG C L, ZHAO S X. Mechanical sensitivity of AP with different particle size[J]. Chinese Journal of Explosives & Propellants, 2006, 29(6): 27-29.
[20]刘连生, 吴春平, 汪旭光. 硝酸铵粒度对改性硝酸铵机械感度的影响[J]. 火炸药学报, 2008, 31(4): 27-29.
LIU L S, WU C P, WANG X G. Effect of particle size of AN on the mechanical sensitivity of modified AN [J]. Chinese Journal of Explosives & Propellants, 2008, 31(4): 27-29.
[21]黎博, 刘巧娥, 高向东, 等. 机械球磨法制备纳米 HATO 及其性能测试[J]. 火炸药学报, 2019, 42(1): 97-102.
LI B, LIU Q E, GAO X D, et al. Preparation of nano-HATO by mechanical milling method and its performance test [J]. Chinese Journal of Explosives & Propellants, 2019, 42(1): 97-102.
[22]张为鹏, 黄亚峰, 杜建锋, 等. 5,5’-联四唑-1,1’-二氧二羟胺(HATO)的机械感度影响因素研究[J]. 应用化工, 2022, 51(3): 706-709.
ZHANG W P, HUANG Y F, DU J F, et al. Research on influencing mechanical sensitivity of dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate (HATO)[J]. Applied Chemical Industry, 2022, 51(3): 706-709.
[23]许诚, 张敏, 赵娟, 等. 重结晶工艺对 1,1’-二羟基-5,5’-联四唑二羟胺盐热性能和机械感度的影响[J]. 含能材料, 2017, 25(5): 409-412.
XU C, ZHANG M, ZHAO J, et al. Influence of recrystallization process on the thermal properties and mechanical sensitivity of dihydroxylammonium 5,5’-biste-trazole-1,1’-diolate (HATO)[J]. Chinese Journal of Energetic Materials, 2017, 25(5): 409-412.
[24]刘佳辉, 范桂娟, 卢校军, 等. TKX50基混合炸药的爆轰及安全性能[J]. 含能材料, 2019, 27(11): 902-907.
LIU J H, FAN G J, LU X J, et al. Detonation and safety performance of TKX-50 based PBX[J]. Chinese Journal of Energetic Materials, 2019, 27(11): 902-907.
[25]耿孝恒. PETN 粒度对其机械感度的影响[J]. 火炸药学报, 2012, 35(4): 30-32.
GENG X H. Influence of particle size on mechanical sensitivity of PETN [J]. Chinese Journal of Explosives & Propellants, 2012, 35(4): 30-32.
[26]谢虓, 艾进, 黄靖伦, 等. 热刺激作用下 FOX-7 颗粒形貌演化对其力学特性及感度的影响[J]. 含能材料, 2023, 31(10): 986-993.
XIE X, AI J, HUANG J L, et al. Effect of morphology evolution on mechanical properties and sensitivities for FOX-7 particles under thermal stimulus[J]. Chinese Journal of Energetic Materials, 2023, 31(10): 986-993.
[27]谭爱喜, 张光辉, 刘劲彪. 烟花爆竹用烟火药机械感度影响因素分析[J]. 火工品, 2004(4): 49-51.
TAN A X, ZHANG G H, LIU J B, et al. Analysis of the influence factors on mechanical sensitivity of pyrotechnic compound [J]. Initiators & Pyrotechnics, 2004(4): 49-51.
[28]姜夕博, 陈利平, 彭金华, 等. 环境温度对烟火药剂混触机械感度的影响研究[J]. 中国安全科学学报, 2010, 20(8): 93-96.
JIANG X B, CHEN L P, PENG J H, et al. Influence of temperature on mechanical sensitivity of pyrotechnic compositions [J]. China Safety Science Journal, 2010, 20(8): 93-96.
[29]宋小兰, 王毅, 刘丽霞, 等. 机械球磨法制备纳米 TATB 及其表征[J]. 固体火箭技术, 2017, 40(4): 471-475.?
SONG X L, WANG Y, LIU L X, et al. Characterization of nano TATB fabricated by mechanical milling methodology [J]. Journal of Solid Rocket Technology, 2017, 40(4): 471-475.?
[30]王毅, 宋小兰, 赵珊珊, 等. 机械球磨法制备纳米 HMX/HNS 共/混晶炸药[J]. 火炸药学报, 2018, 41(3): 261-266.
WANG Y, SONG X L, ZHAO S S, et al. Preparation of nano HMX/HNS co/mixed crystal explosive by mechanical ball milling method [J]. Chinese Journal of Explosives & Propellants, 2018, 41(3): 261-266.
[31]霍宏彪, 叶宝云, 李敏杰, 等. HNS 基含能复合微粒的机械球磨法制备及其性能研究[J]. 火炸药学报, 2023, 46(4): 315-320.
HUO H B, YE B Y, LI M J, et al. Preparation and properties of HNSbased energetic composite particles by mechanical ball milling [J]. Chinese Journal of Explosives & Propellants, 2023, 46(4): 315-320.
[32]LOCHERT I J, FRANSON M D, HAMSHERE B L. Reduced sensitivity (RS-RDX) RDX Part I: literature review and DSTO evaluation: DSTO-TR-1447[R]. Edinburgh, SA, AU: DSTO System Sciences Laboratory, 2003.
[33]曹雄, 杨丽媛, 王华煜, 等. 快速冷冻干燥法制备网络纳米结构 TKX-50 的热分解和燃烧特性[J]. 含能材料, 2018, 26(12): 1044-1048.
CAO X, YANG L Y, WANG H Y, et al. Thermal decomposition and combustion characteristics of TKX-50 with network nanostructure fabricated by rapid freezedrying method [J]. Chinese Journal of Energetic Materials, 2018, 26(12): 1044-1048.
[34]刘畅, 叶宝云, 刘乾, 等. 不同形貌FOX-7炸药的制备及其性能表征[J]. 含能材料, 2022, 30(7): 659-665.
LIU C, YE B Y, LIU Q, et al. Preparation and characterization of FOX-7 explosives with different shapes [J]. Chinese Journal of Energetic Materials, 2022, 30(7): 659-665.
[35]王艳茹, 吴星亮, 杨年, 等. HATO 的机械感度﹑热分解特性及爆轰性能[J]. 火炸药学报, 2023, 46(10): 882-888.
WANG Y R, WU X L, YANG N, et al. The mechanical sensitivity, thermal decomposition characteristics, and detonation performance of HATO [J]. Chinese Journal of Explosives & Propellants, 2023, 46(10): 882-888.
[36]王玉玲, 余文力. 炸药与火工品[M]. 西安: 西北工业大学出版社, 2011.
[37]KISSINGER H E. Reaction kinetics in differential thermal analysis [J]. Analytical Chemistry, 1957, 29: 1702-1706.
[38]OZAWA T. A new method of analyzing thermogravimetric data [J]. Bulletin of the Chemical Society of Japan, 1965, 38(11): 1881-1886.
[39]刘玉存, 王建华, 安崇伟, 等. RDX 粒度对机械感度的影响[J]. 火炸药学报, 2004, 27(2): 7-9.
LIU Y C, WANG J H, AN C W, et al. Effect of particle size of RDX on mechanical sensitivity [J]. Chinese Journal of Explosives & Propellants, 2004, 27(2): 7-9.

相似文献/References:

[1]董岩,刘祖亮.DADNBF为基的混合炸药的性能和应用[J].爆破器材,2012,41(04):5.
 DONG Yan,LIU Zuliang.Properties and Application of DADNBF Based Composite Explosive[J].EXPLOSIVE MATERIALS,2012,41(05):5.
[2]董岩①,刘祖亮①,苏强②,等.5,7-二氨基-4,6-二硝基苯并氧化呋咱的制备[J].爆破器材,2013,42(01):10.[doi:10.3969/j.issn.1001-8352.2013.01.003]
 DONG Yan,LIU Zuliang,SU Qiang,et al.Preparation of 5,7-diamino-4,6-dinitrobenzenfuroxan[J].EXPLOSIVE MATERIALS,2013,42(05):10.[doi:10.3969/j.issn.1001-8352.2013.01.003]
[3]沈盼盼①,杜富贵②,刘祖亮①.超细DADNBF的性能研究[J].爆破器材,2014,43(01):19.[doi:10.3969/j.issn.1001-8352.2014.01.004]
 SHEN Panpan,DU Fugui,LIU Zuliang.Properties Research of Ultrafine DADNBF[J].EXPLOSIVE MATERIALS,2014,43(05):19.[doi:10.3969/j.issn.1001-8352.2014.01.004]
[4]祝洁①,许登②,王鹏程②.2,6-双(二硝基亚甲基)-1,3,4,5,7,8-六硝基十二氢二咪唑[4,5-b:4′,5′-e]吡嗪分子结构及性能的理论计算[J].爆破器材,2018,47(03):1.[doi:10.3969/j.issn.1001-8352.2018.03.001]
 ZHU Jie,XU Deng,WANG Pengcheng.Computational Study on the Chemical Structure and Explosive Properties of 2,6-Bis(dinitromethylidene)-1,3,4,5,7,8-hexanitrododecahydrodiimidazo-[4,5-b:4′,5′-e]pyrazine[J].EXPLOSIVE MATERIALS,2018,47(05):1.[doi:10.3969/j.issn.1001-8352.2018.03.001]

备注/Memo

备注/Memo:
收稿日期:2024-01-22
基金项目:国家自然科学基金面上项目 (12272184)
第一作者:王艳茹 (1996—),女,博士研究生,主要从事炸药安全性能研究。E-mail: 245159533@qq.com
通信作者:吴星亮 (1994—),男,博士,主要从事炸药性能及炸药爆炸输出特性研究。E-mail: wuxingliang94@163.com
徐森 (1981—),男,教授,博导,主要从事爆炸力学研究。E-mail: xusen@njust.edu.cn
更新日期/Last Update: 2024-10-10