[1]陈资, 李昌. 基于KPCA-WOA-ELM的爆破飞石距离预测[J]. 爆破器材, 2022, 51(2): 47-51.
CHEN Z, LI C. Prediction of blasting flyrock distance based on KPCA-WOA-ELM [J]. Explosive Materials, 2022, 51(2): 47-51.
[2]刘文广. 中心城区超高层楼群多切口折叠爆破拆除[J]. 爆破器材, 2021, 50(5): 58-64.
LIU W G. Folding blasting demolition with multiple cuts of super high-rise buildings in central urban area [J]. Explosive Materials, 2021, 50(5): 58-64.
[3]王振毅, 李静, 钱至桥, 等. 岩溶地质下露天深孔爆破飞石飞散距离的预测[J]. 爆破, 2022, 39(3): 199-203.
WANG Z Y, LI J, QIAN Z Q, et al. Prediction of flyrock distance in open-pit deep hole blasting under karst geology [J]. Blasting, 2022, 39(3): 199-203.
[4]国家安全生产监督管理总局. 爆破安全规程: GB 6722—2014 [S]. 北京: 中国标准出版社, 2014.
State Administration of Work Safety. Safety regulations for blasting: GB 6722—2014 [S]. Beijing: Standards Press of China, 2014.
[5]孙远征, 龙源, 范磊, 等. 在复杂环境中的砖混烟囱定向爆破拆除[J]. 爆破, 2007, 24(2): 54-57.
SUN Y Z, LONG Y, FAN L, et al. Demolition of brick-concrete chimney by directional blasting in complex environment [J]. Blasting, 2007, 24(2): 54-57.
[6]程康, 章昌顺. 深孔梯段爆破飞石距离计算方法初步探讨[J]. 岩石力学与工程学报, 2000, 19(4): 531-533.
CHENG K, ZHANG C S. Inquiry into flyrock distance for deep-hole blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(4): 531-533.
[7]MURLIDHAR B R, KUMAR D, ARMAGHANI D J, et al. A novel intelligent ELMBBO technique for predicting distance of mine blasting-induced flyrock [J]. Natural Resources Research, 2020, 29(6): 4103-4120.
[8]刘庆, 张光权, 吴春平, 等. 基于BP神经网络模型的爆破飞石最大飞散距离预测研究[J]. 爆破, 2013, 30(1): 114-118.
LIU Q, ZHANG G Q, WU C P, et al. Research on maximum distance prediction of blast flyrock based on BP neural network [J]. Blasting, 2013, 30(1): 114-118.
[9]FARADONBEH R S, ARMAGHANI D J, MONJEZI M, et al. Genetic programming and gene expression programming for flyrock assessment due to mine blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88: 254-264.
[10]陈建宏, 彭耀, 邬书良. 基于灰色Elman神经网络的爆破飞石距离预测研究[J]. 爆破, 2015, 32(1): 151-156.
CHEN J H, PENG Y, WU S L. Prediction of blasting flyrock distance based on Elman neural network [J]. Blasting, 2015, 32(1): 151-156.
[11]张西良. 岩体爆破环境效应预测的集成学习模型及工程应用[D]. 合肥: 中国科学技术大学, 2020: 65-90.
ZHANG X L. Ensemble learning model and engineering application of environmental effect prediction of rock mass blasting [D]. Hefei: University of Science and Technology of China, 2020: 65-90.
[12]ARMAGHANI D J, KOOPIALIPOOR M, BAHRI M, et al. A SVR-GWO technique to minimize flyrock distance resulting from blasting [J]. Bulletin of Engineering Geology and the Environment, 2020, 79: 4369-4385.
[13]张研, 吴哲康, 王鹏鹏, 等. 基于PCA-RVM的露天矿边坡稳定性预测模型[J]. 矿业研究与开发, 2021, 41 (3): 13-18.
ZHANG Y, WU Z K, WANG P P, et al. Prediction model of slope stability of open pit mine based on PCA-RVM [J]. Mining Research and Development, 2021, 41(3): 13-18.
[14]赵春晖, 张燚. 相关向量机分类方法的研究进展与分析[J]. 智能系统学报, 2012, 7(4): 294-301.
ZHAO C H, ZHANG Y. Research progress and analysis on methods for classification of RVM [J]. CAAI Transactions on Intelligent Systems, 2012, 7(4): 294-301.
[15]楼俊钢, 江建慧, 沈张果, 等. 软件可靠性预测的相关向量机模型[J]. 计算机研究与发展, 2013, 50(7): 1542-1550.
LOU J G, JIANG J H, SHEN Z G, et al. Software reliability prediction modeling with relevance vector machine [J]. Journal of Computer Research and Development, 2013, 50(7): 1542-1550.
[16]TIPPING M E. Sparse bayesian learning and the relevance vector machine [J]. Journal of Machine Learning Research, 2001, 1: 211-244.
[17]张研, 王鹏鹏. 基于RVM的爆破振动速度预测模型[J]. 爆破, 2022, 39(1): 168-174.
ZHANG Y, WANG P P. Blasting vibration velocity prediction model based on RVM [J]. Blasting, 2022, 39(1): 168-174.
[18]张研, 王伟, 邓雪沁. 基于相关向量机的TBM掘进速度预测模型[J]. 现代隧道技术, 2020, 57(3): 108-114.
ZHANG Y, WANG W, DENG X Q. Prediction model of TBM advance rate based on relevance vector machine [J]. Modern Tunneling Technology, 2020, 57(3): 108-114.
[19]陈财森, 胡海荣, 程志炜, 等. 基于BA-RVM算法的发动机故障诊断技术研究[J]. 计算机工程与科学, 2023, 45(2): 332-337.
CHEN C S, HU H R, CHENG Z W, et al. Engine fault diagnosis technology based on BA-RVM algorithm [J]. Computer Engineering & Science, 2023, 45(2): 332-337.
[20]ESFANDYARI M, DELOUEI A A, JALAI A. Optimization of ultrasonic-excited double-pipe heat exchanger with machine learning and PSO [J]. International Communications in Heat and Mass Transfer, 2023, 147: 106985.
[21]余修武, 谢晓永, 梁北孔, 等. 基于粒子群优化和巷道分区的深井WSN定位算法[J]. 中国安全科学学报, 2019, 29(2): 166-171.
YU X W, XIE X Y, LIANG B K, et al. A deep mine WSN localization algorithm based on both particle swarm optimization and tunnel partition [J]. China Safety Science Journal, 2019, 29(2): 166-171.
[22]杨维, 李歧强. 粒子群优化算法综述[J]. 中国工程科学, 2004, 6(5): 87-94.
YANG W, LI Q Q. Survey on particle swarm optimization algorithm [J]. Engineering Science, 2004, 6(5): 87-94.
[23]OKOJI A I, OKOJI C N, AWARUN O S. Performance evaluation of artificial intelligence with particle swarm optimization (PSO) to predict treatment water plant DBPs (haloacetic acids) [J]. Chemosphere, 2023, 344: 140238.
[24]黄晶柱, 钟依禄, 黄裘俊, 等. 基于高斯过程回归矿山爆破飞石距离预测模型[J]. 工程爆破, 2023, 29(2): 73-79, 108.
HUANG J Z, ZHONG Y L, HUANG Q J, et al. Prediction model of blasting flyingrock distance in mine based on Gaussian process regression [J]. Engineering Blasting, 2023, 29(2): 73-79, 108.