[1]刘轩, 庞爱民, 洪昕林, 等. 惰性热塑性弹性体在复合固体推进剂中的应用研究进展[J]. 固体火箭技术, 2018, 41(2): 190-196, 202.
LIU X, PANG A M, HONG X L, et al. Research progress on application of inert thermoplastic elastomers in composite solid propellants [J]. Journal of Solid Rocket Technology, 2018, 41(2): 190-196, 202.
[2]李伟, 顾健, 宋琴, 等. 国外热塑性弹性体推进剂研究进展[J]. 化学推进剂与高分子材料, 2015, 13(6): 8-13.
LI W, GU J, SONG Q, et al. Research progress of thermoplastic elastomer propellant abroad [J]. Chemical Propellants & Polymeric Materials, 2015, 13(6): 8-13.
[3]宋秀铎, 曹鹏, 郑伟, 等. BAMO-AMMO黏合剂相对分子质量对推进剂力学性能的影响[J]. 中国胶粘剂, 2017, 26(8): 1-3, 28.
SONG X D, CAO P, ZHENG W, et al. Influences of relative molecular mass of BAMO-AMMO adhesive on mechanical properties of propellants [J]. China Adhesives, 2017, 26(8): 1-3, 28.
[4]唐刚, 罗运军, 李霄羽, 等. 热熔胶基推进剂的流变性能[J]. 火炸药学报, 2022, 45(2): 264-270.
TANG G, LUO Y J, LI X Y, et al. Rheological properties of hot-melt adhesive-based propellant[J]. Chinese Journal of Explosives & Propellants, 2022, 45(2): 264-270.
[5]WILKINSON P J, WEAVER M C, KISTER G, et al. Styrene-ethylene/butylene-styrene (SEBS) block copolymer binder for solid propellants [J]. Propellants, Explosives, Pyrotechnics, 2022, 47(1): 202100142.
[6]周海波, 贾景霞, 汤明珮, 等. 新型热塑性弹性体SEBS[J].辽宁化工, 2016, 45(10): 1327-1330.
ZHOU H B, JIA J X, TANG M P, et al. A new thermoplastic elastomer [J]. Liaoning Chemical Industry, 2016, 45(10): 1327-1330.
[7]SINGH A, RADHAKRISHNAN S, VIJAYALAKSHMI R, et al. Screening of polymer-plasticizer systems for propellant binder applications: an experimental and simulation approach [J]. Journal of Energetic Materials, 2019, 37: 365-377.
[8]YU Z F, WANG W Z, YAO W S, et al. Simulation for the migration of nitrate ester plasticizers in different liners contacting with propellant by molecular dynamics[J]. Journal of Energetic Materials, 2021, 39: 74-84.
[9]王泽清, 余咸旱, 刘威, 等. 聚醋酸乙烯酯与黑索今体系的分子动力学模拟[J]. 爆破器材, 2019, 48(5): 6-11.
WANG Z Q, YU X H, LIU W, et al. Molecular dynamics simulation of PVAc and RDX [J]. Explosive Materials, 2019, 48(5): 6-11.
[10]屈蓓, 唐秋凡, 李吉祯, 等. 分子动力学及热分析方法研究CL-20与推进剂主要组分的相互作用[J]. 固体火箭技术, 2017, 40(4): 476-483.
QU B, TANG Q F, LI J Z, et al. Interaction of CL-20 with solid propellant components by molecular dynamics simulation and thermal analysis method [J]. Journal of Solid Rocket Technology, 2017, 40(4): 476-483.
[11]BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath [J]. Journal of Chemical Physics, 1984, 81(8): 3684-3690.
[12]ANDERSEN H C. Molecular dynamics simulations at constant pressure and/or temperature [J]. The Journal of Chemistry Physics, 1980, 72(4): 2384-2393.
[13]KARASAWA N, GODDARD W A. Force fields, structures, and properties of poly(vinylidene fluoride) crystals [J]. Macromolecules, 1992, 25(26): 7268-7281.
[14]EWALD P P. Die berechnung optischer und elektrostatischer gitterpotentiale [J]. Annalen der Physik, 1921, 369(3): 253-287.
[15]SIMPSON R L, URTIEW P A, ORNELLAS D L, et al. CL-20 performance exceeds that of HMX and its sensitivity is moderate [J]. Propellants, Explosives, Pyrotechnics, 2010, 22(5): 249-255.