[1]GU S Q, CHEN J H, FENG W X, et al. Development and application of lightning protection technologies in power grids of China[J]. High Voltage Engineering, 2013, 39(10): 2329-2343.
[2]YAN X, ZHANG Y J, CHEN S D, et al. Characteristics of two ground grid potentials after a triggered lightning stroke [J]. IEEE Access, 2020, 8: 171001-171008.
[3]CHEN S D, YAN X, ZENG Y B, et al. The damage effects on surge protective devices caused by the ground potential rise during the initial long continuous current processes of triggered lightning events [J]. IEEE Transactions on Power Delivery, 2021, 36(4): 2186-2193.
[4]颜旭, 张义军, 杜赛, 等. 触发闪电产生的地网地电位抬升及暂态效应[J]. 应用气象学报, 2020, 31(2): 247-256.
YAN X, ZHANG Y J, DU S, et al. Ground potential rise and transient response of the grounding grid based on the triggered lightning [J]. Journal of Applied Meteorological Science, 2020, 31(2): 247-256.
[5]颜旭, 陈绍东, 江润志, 等. 自然雷电下氧化锌避雷器残压特征分析[J]. 中国电力, 2013, 46(7): 72-76.
YAN X, CHEN S D, JIANG R Z, et al. Analysis on characteristics of residual voltage in ZnO SPD based on natural lightning [J]. Electric Power, 2013, 46(7): 72-76.
[6]颜旭, 张义军, 陈绍东, 等. 1次人工触发闪电引起的临近地网电位升高及其特征分析[J]. 高电压技术, 2017, 43(5): 1642-1649.
YAN X, ZHANG Y J, CHEN S D, et al. Ground potential rise between the adjacent ground networks based on one artificially triggered lightning [J]. High Voltage Engineering, 2017, 43(5): 1642-1649.
[7]ZHAO C, CHEN J H, WANG J, et al. Research on technology of lightning disaster risk assessment for power system [J]. High Voltage Engineering, 2011, 37(12): 3012-3021.
[8]赵淳, 陈家宏, 谷山强, 等.山区复杂地形条件下输电线路雷击跳闸故障分析方法[J]. 电网技术, 2011, 35(12): 136-141.
ZHAO C, CHEN J H, GU S Q, et al. Analysis on the lightning trip-out failure of transmission line under conditions of complex landscape in a mountainous area[J]. Power System Technology, 2011, 35(12): 136-141.
[9]RUAN L, GU S Q, ZHAO C, et al. Technology and strategy of differentiated lightning protection for 220 kV transmission line in three gorges area of western Hubei[J]. High Voltage Engineering, 2012, 38(1): 157-166.
[10]徐金霞, 郭海燕, 代涛, 等. 四川泸州长江河谷地带雷电危险性评价[J].西南大学学报(自然科学版), 2023, 45(2): 160-169.
XU J X, GUO H Y, DAI T, et al. Evaluation of lightning hazard in the Yangtze River valley of Luzhou, Sichuan [J].Journal of Southwest University (Natural Science Edition), 2023, 45(2): 160-169.
[11]吴安坤, 周道刚, 张淑霞, 等. 贵州省雷电易发性等级划分[J]. 贵州气象, 2017, 41(2): 53-55.
WU A K, ZHOU D G, ZHANG S X, et al. Classification of lightning prone grades in Guizhou Province [J]. Journal of Guizhou Meteorology, 2017, 41(2): 53-55.
[12]ARANGUREN D, MONTANYA J, SOLA G, et al. On the lightning hazard warning using electrostatic field: analysis of summer thunderstorms in Spain [J]. Journal of Electrostatics, 2009, 67(2/3): 507-512.
[13]植耀玲, 冯民学, 樊荣. 雷击风险评估中Lo损失因子在多线路系统下的细化和改进[J]. 气象科学,2012, 32(3): 298-303.
ZHI Y L, FENG M X, FAN R. The refinement and improvement of methods for calculating loss factor Lo within multilineal system in lightning risk assessment[J]. Journal of the Meteorological Sciences, 2012, 32(3): 298-303.
[14]王强, 王建初, 顾宇丹. 电场时序差分在雷电预警中的有效性分析[J]. 气象科学, 2009, 29(5): 657-663.
WANG Q, WANG J C, GU Y D. Validity analysis of electric field temporal difference in thunderstorm warning[J]. Journal of the Meteorological Sciences, 2009, 29(5): 657-663.
[15]郭军成, 麴春, 王国庆, 等. 电源线路主动防雷装置存在问题分析和优化研究[J]. 中国城市规划知识仓库, 2020(4): 283-285.
[16]曾金全, 朱彪, 王颖波, 等. 基于雷电临近预警技术的主动防雷应用[J]. 应用气象学报, 2015, 26(5): 610-617.
ZENG J Q, ZHU B, WANG Y B, et al. The application of initiative lightning protection technology based on lightning nowcasting and warning [J]. Journal of Applied Meteorology Science, 2015, 26(5): 610-617.