[1]吉小旺①,凡文蕊①,李纯志②,等.梯形内嵌多方孔模块发射药的打印制备及定容燃烧性能[J].爆破器材,2024,53(05):21-27.[doi:10.3969/j.issn.1001-8352.2024.05.004]
 JI Xiaowang,FAN Wenrui,LI Chunzhi,et al.Printing Preparation and Constant Volume Combustion Performances of a Trapezoidal Module Propellant Embedded with Multi-Square Holes[J].EXPLOSIVE MATERIALS,2024,53(05):21-27.[doi:10.3969/j.issn.1001-8352.2024.05.004]
点击复制

梯形内嵌多方孔模块发射药的打印制备及定容燃烧性能()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年05
页码:
21-27
栏目:
爆炸材料
出版日期:
2024-10-11

文章信息/Info

Title:
Printing Preparation and Constant Volume Combustion Performances of a Trapezoidal Module Propellant Embedded with Multi-Square Holes
文章编号:
5891
作者:
吉小旺凡文蕊李纯志龙义强周伟良肖乐勤
①南京理工大学化学与化工学院(江苏南京,210094)
②泸州北方化学工业有限公司(四川泸州,646000)
③四川临港五洲工程设计有限公司(四川泸州,646000)
Author(s):
JI Xiaowang FAN Wenrui LI Chunzhi LONG Yiqiang ZHOU Weiliang XIAO Leqin
① School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
② Luzhou North Chemical Industry Co., Ltd. (Sichuan Luzhou, 646000)
③ Sichuan Lin-gang Wuzhou Engineering Design Co., Ltd. (Sichuan Luzhou, 646000)
关键词:
内嵌多方孔模块发射药直写打印燃烧性能
Keywords:
embedded with multi-square hole module propellant direct writing printing combustion performance
分类号:
TQ562
DOI:
10.3969/j.issn.1001-8352.2024.05.004
文献标志码:
A
摘要:
为了设计和制备弧厚小、燃烧时间短、渐增性好的新型发射药,以12.7 mm枪弹装药为对象,设计了梯形内嵌多方孔结构,采用直写成型工艺制备了外层弧厚不同、内嵌多方孔结构的梯形模块发射药。发射药长41 mm,内嵌方孔单边长为0.4 mm,内孔个数为3 105。通过密闭爆发器试验,研究了模块发射药和制式药/模块发射药混合装药的定容燃烧性能。结果表明:打印发射药燃烧正常,在相对压力B>0.2后,外层弧厚为1.0 mm的模块发射药的动态燃烧活度相对外层弧厚为0.5 mm的下降较缓;当混合装药质量比为5∶5时,分裂点后移,燃烧渐增性较好;打印发射药在爆发器内燃烧时间小于8 ms,与制式药燃烧时间相当,能满足小口径武器快速燃烧的要求。
Abstract:
In order to design and prepare a new type of propellant with small arc thickness, short combustion time, and good incremental properties, a trapezoidal structure embedded with multi-square holes was designed for a 12.7 mm cartridge charge. A trapezoidal module propellant with different outer arc thicknesses and embedded multi-square holes was prepared using direct writing molding technology. The length of the trapezoidal module propellant is 41 mm, the side length of a embedded square hole is 0.4 mm, and the number of inner holes is 3 105. Constant volume combustion performances of the modular propellant and its mixed charges with standard propellants were studied through closed explosive tests. The results show that the combustion of the printed propellant was normal. After the relative pressure B?reaches 0.2, the dynamic combustion activity of the module propellant with an outer arc thickness of 1.0 mm decreases more slowly compared to the module propellant with an outer arc thickness of 0.5 mm. When the mass ratio of the mixed charge is 5∶5, the splitting point shifts backward and the combustion gradually increases. Combustion time of the printed propellant in the explosive device is less than 8 ms, which is equivalent to the combustion time of standard propellant and can meet the requirements of rapid combustion of small caliber weapons.

参考文献/References:

[1]王泽山, 何卫东, 徐复铭. 火药装药设计原理与技术[M]. 北京: 北京理工大学出版社, 2006.
[2]金志明. 枪炮内弹道学[M]. 北京: 北京理工大学出版社, 2004.
[3]罗运军, 李锋. 发射药燃烧控制技术的研究[J]. 燃烧科学与技术, 1998(1): 24-30.
LUO Y J, LI F. The Propellant combustion control technology [J]. Journal of Combustion Science and Technology, 1998(1): 24-30.
[4]高宇晨, 胡睿, 周敬, 等. 异形发射药结构设计与计算验证[J]. 火炸药学报, 2021, 44(5): 698-704.
GAO Y C, HU R, ZHOU J, et al. Structural design and calculation verification of special-shaped gun propellant [J]. Chinese Journal of Explosives & Propellants, 2021, 44(5): 698-704.
[5]张延康, 肖忠良, 刘详, 等. 预制刻槽增面燃烧发射药的原理与实验验证[J]. 含能材料, 2022, 30(12): 1219-1225.
ZHANG Y K, XIAO Z L, LIU X, et al. Principle and control method of pre-grooved gun propellant with progressive combustion feature [J]. Chinese Journal of Energetic Materials, 2022, 30(12): 1219-1225.
[6]许征光, 梁昊, 丁亚军, 等. 四孔长方体发射药的形状函数计算及燃烧性能[J]. 含能材料, 2020, 28(6): 491-497.
XU Z G, LIANG H, DING Y J, et al. Calculation of shape function and combustion performance of fourhole cuboid gun propellant [J]. Chinese Journal of Energetic Materials, 2020, 28(6): 491-497.
[7]牛星星, 梁家豪, 吕敬伟, 等. “三明治”片状发射药形状函数及燃烧性能计算[J]. 兵器装备工程学报, 2019, 40(1): 68-73.
NIU X X, LIANG J H, LǔJ W, et al. Research on shape function and combustion performance calculation of sandwich flaky propellant [J]. Journal of Ordnance Equipment Engineering, 2019, 40(1): 68-73.
[8]贾永杰, 杨建兴, 石先锐, 等. 一种新型大弧厚六翼星孔棒状发射药的燃烧特性[J]. 含能材料, 2017, 25(9): 722-725.
JIA Y J, YANG J X, SHI X R, et al. Combustion characteristics of seraph star-hole gun propellant with large web size [J]. Chinese Journal of Energetic Materials, 2017, 25(9): 722-725.
[9]姜一帆, 赵凤起, 李辉, 等. 墨水直写增材制造技术及其在含能材料领域的研究进展[J]. 火炸药学报, 2022, 45(1): 1-19.
JIANG Y F, ZHAO F Q, LI H, et al. Direct ink writing technology for additive manufacturing and its research progress in energetic materials [J]. Chinese Journal of Explosives & Propellants, 2022, 45(1): 1-19.
[10]肖磊, 郝嘎子, 郭锐, 等. 含能材料增材制造技术的研究现状与展望[J]. 火炸药学报, 2022, 45(2): 133-153.
XIAO L, HAO G Z, GUO R, et al. Research status and prospects of additive manufacturing technology for energetic materials [J]. Chinese Journal of Explosives & Propellants, 2022, 45(2): 133-153.
[11]张洪林, 刘宝民, 马新安, 等. 基于3D打印技术的发射药燃烧增面设计[J]. 含能材料, 2016, 24(5): 491-496.
ZHANG H L, LIU B M, MA X A, et al. Design of increased burning area of propellant based on 3D printing technology [J]. Chinese Journal of Energetic Materials, 2016, 24(5): 491-496.
[12]凡文蕊, 熊鹏, 宋育芳, 等. 直写打印硝化棉基内嵌多方孔发射药及其性能[J]. 含能材料, 2022, 30(9): 903-910.
FAN W R, XIONG P, SONG Y F, et al. Direct ink writing and properties of nitrocellulose-based gun propellants embeded with multi-cubic pores [J]. Chinese Journal of Energetic Materials, 2022, 30(9): 903-910.
[13]王沫茹, 周拥荣, 金国瑞, 等. 双基发射药挤出式3D打印技术[J]. 含能材料, 2022, 30(9): 897-902.
WANG M R, ZHOU Y R, JIN G R, et al. Extrusion 3D printing technology of double base gun propellants [J]. Chinese Journal of Energetic Materials, 2022, 30(9): 897-902.
[14]高宇晨, 李曼曼, 胡睿, 等. 3D打印成型技术制备CL-20基光固化发射药及其性能研究[J]. 火炸药学报, 2022, 45(2): 271-276.
GAO Y C, LI M M, HU R, et al. 3D printing technology and properties of CL-20-based photocurable gun propellants [J]. Chinese Journal of Explosives & Propellants, 2022, 45(2): 271-276.
[15]胡睿, 杨伟涛, 姜再兴, 等. 一种基于光聚合固化成型发射药3D打印方法[J]. 火炸药学报, 2020, 43(4): 368-371, 382.
HU R, YANG W T, JIANG Z X, et al. 3D printing method of gun propellants based on vat photopolymerization [J]. Chinese Journal of Explosives & Propellants, 2020, 43(4): 368-371, 382.
[16]杨伟涛, 肖霞, 胡睿, 等. 增材制造技术在火炸药成型中的研究进展[J]. 火炸药学报, 2020, 43(1): 1-11.
YANG W T, XIAO X, HU R, et al. Developments of additive manufacturing technology in propellants, explosives and pyrotechnics [J]. Chinese Journal of Explosives & Propellants, 2020, 43(1): 1-11.
[17]朱国豪. CL-20基光/热双固化含能油墨设计与直写成型技术研究[D]. 太原: 中北大学, 2021.
ZHU G H. Formula design and direct ink writing of CL-20 based UV/thermal dual curing energetic ink [D]. Taiyuan: North University of China, 2021.
[18]中国兵器工业集团公司. 火药试验方法:GJB 770B—2005 [S]. 北京: 国防科工委军标出版发行部, 2005.
China North Industries Group Co., Ltd. Test methods of propellants: GJB 770B—2005 [S]. Beijing: Armament Standard Press of Commission of Science Technology and Industry for National Defence, 2005.

备注/Memo

备注/Memo:
收稿日期:2023-11-01
第一作者:吉小旺(1999—),男,硕士研究生,主要从事含能材料3D打印的研究。E-mail:320958636@qq.com
通信作者:肖乐勤(1972—),女,副研究员,主要从事推进剂及发射药的研究。E-mail:leqinxiao@njust.edu.cn
更新日期/Last Update: 2024-10-10