[1]NAUMANN C, KICK T, METHLING T, et al. Ethene/nitrous oxide mixtures as a green propellant to substitute hydrazine: reaction mechanisms validation [J]. International Journal of Energetic Materials and Chemical Propulsion, 2020, 19(1): 65-71.
[2]ZHANG F, CHEN H Y, FENG J C, et al. Experimental investigation of auto-ignition of ethylene-nitrous oxide propellants in rapid compression machine [J]. Fuel, 2021, 288: 119688.
[3]MAYER A E H J, WIELING W P W, WATTS A, et al. European fuel blend development for in-space propulsion [C]//Space Propulsion Conference. Sevilla, Spain, 2018.
[4]JANZER C, RICHTER S, NAUMANN C, et al. “Green propellants” as a hydrazine substitute: experimental investigations of ethane/ethenenitrous oxide mixtures and validation of detailed reaction mechanism [J]. CEAS Space Journal, 2022, 14: 151-159.
[5]韩伟, 王永忠, 单世群, 等. 氧化亚氮基氧燃一体化推进剂及推进系统研究进展[J]. 火箭推进, 2020, 46(5): 1-9.
HAN W, WANG Y Z, SHAN S Q, et al. Research progress of nitrous-oxide-based oxidizer-fuel integrated propellant and propulsion system [J]. Journal of Rocket Propulsion, 2020, 46(5): 1-9.
[6]PFAHL U J, ROSS M C, SHEPHERD J E, et al. Flammability limits, ignition energy, and flame speeds in H2-CH4-NH3-N2O-O2-N2 mixtures [J]. Combustion & Flame, 2000, 123(1/2): 140-158.
[7]VALERA-MEDINA A, MORRIS S, RUNYON J, et al. Ammonia, methane and hydrogen for gas turbines [J]. Energy Procedia, 2015, 75: 118-123.
[8]VALERA-MEDINA A, GUTESA M, XIAO H, et al. Premixed ammonia/hydrogen swirl combustion under rich fuel conditions for gas turbines operation [J]. International Journal of Hydrogen Energy, 2019, 44(16): 8615-8626.
[9]WERLING L, JOOB Y, WENZEL M, et al. A premixed green propellant consisting of N2O and C2H4: experimental analysis of quenching diameters to designing flashback arresters [J]. International Journal of Energetic Materials and Chemical Propulsion, 2018, 17(3): 241-262.
[10]VENKATESH P B, MEYER S E, BANE S P M, et al. Deflagration-to-detonation transition in nitrous oxide/oxygen-fuel mixtures for propulsion [J]. Journal of Propulsion and Power, 2019, 35 (5): 944-952.
[11]WERLING L, HORGER T. Experimental analysis of the heat fluxes during combustion of a N2O/C2H4 premixed green propellant in a research rocket combustor [J]. Acta Astronautica, 2021, 189: 437-451.
[12]WANG L Q, MA H H, SHEN Z W. Explosion characteristics of H2/N2O and CH4/N2O diluted with N2 [J]. Fuel, 2019, 260: 116355.
[13]RAZUS D, MITU M, GIURCAN V, et al. Propagation indices of methane-nitrous oxide flames in the presence of inert additives [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 418-426.
[14]施伟, 关亮, 王子模, 等. NOFBx推进剂的火焰传播特性试验及分析[J]. 火箭推进, 2022, 47(5): 92-98.
SHI W, GUAN L, WANG Z M, et al. Flame propagation characteristics test and analysis of NOFBx propellants [J]. Journal of Rocket Propulsion, 2022, 47(5): 92-98.
[15]李智鹏, 孙海云, 蒋榕培, 等. 乙烯-氧化亚氮层流预混燃烧过程研究[J]. 火箭推进, 2018, 44(5): 37-42.
LI Z P, SUN H Y, JIANG R P, et al. Study on premixed laminar combustion process of ethylene/nitrous oxide mixture [J]. Journal of Rocket Propulsion, 2018, 44(5): 37-42.
[16]LI Y Y, JIANG R P, XU S. Experimental studies on flame propagation and detonation characteristics of premixed nitrous oxide, ammonia, and propane in cylindrical channel [J]. Fuel, 2023, 334: 126650.
[17]RAZUS D, MITU M, GIURCAN V, et al. Methane-unconventional oxidant flames. Laminar burning velocities of nitrogen-diluted methane-N2O mixtures [J]. Process Safety and Environmental Protection, 2018, 114: 240-250.
[18]SHEN X B, ZHANG N N, SHI X M, et al. Experimental studies on pressure dynamics of C2H4/N2O mixtures explosion with dilution [J]. Applied Thermal Engineering, 2019, 147: 74-80.
[19]WANG L Q, MA H H, SHEN Z W, et al. A comparative study of the explosion behaviors of H2 and C2H4 with air, N2O and O2 [J]. Fire Safety Journal, 2021, 119: 103260.
[20]段志强, 郑东, 周斌. N2O-C2烃类燃料推进剂燃烧化学反应机理与动力学分析[J]. 火箭推进, 2021, 47(3): 43-51.
DUAN Z Q, ZHENG D, ZHOU B. Chemical reaction mechanism and kinetic analysis of N2O-C2 hydrocarbons propellant [J]. Journal of Rocket Propulsion, 2021, 47(3): 43-51.
[21]KARAMI F, VAHEDPOUR M. Theoretical study on the gas phase reaction mechanism of acetylene with nitrous oxide [J]. Structural Chemistry, 2013, 24(5): 1513-1526.
[22]LI Y Y, JIANG R P, XU S, et al. Theoretical study on the gas-phase oxidation mechanism of ethylene by nitrous oxide [J]. Propellants, Explosives, Pyrotechnics, 2022, 49(7): e202200082.
[23]唐亮, 李平, 张锋, 等. 基于传热反问题方法的N2O/C2H4预混推进剂燃烧室热流测量研究 [J]. 推进技术, 2020, 41(5): 1082-1088.
TANG L, LI P, ZHANG F, et al. Heat flow measurement of N2O/C2H4 premixed propellant combustor based on inverse heat transfer problem method [J]. Journal of Propulsion Technology, 2020, 41(5): 1082-1088.
[24]王伟龙, 张会强. 预混C2H4/N2O推力室喷注面板热反侵着火现象数值模拟[J]. 清华大学学报(自然科学版), 2020, 60(3): 206-211.
WANG W L, ZHANG H Q. Numerical simulations of ignition by soak-back heat through the injection panel in a premixed C2H4/N2O thruster [J]. Journal of Tsinghua University (Science and Technology), 2020, 60(3): 206-211.
[25]刘林林, 何国强, 王英红. 双基推进剂为助燃剂的硼粉燃烧热测试研究[J]. 固体火箭技术, 2012, 35(4): 513-515, 521.
LIU L L, HE G Q, WANG Y H. Research on the combustion heat testing of boron with double base propellant as combustion improver [J]. Journal of Solid Rocket Technology, 2012, 35(4): 513-515, 521.
[26]王英红, 邓永锋, 张晓宏, 等. 含硼富燃料推进剂燃烧热测试装置的改进[J]. 推进技术, 2008, 29(1): 112-115.
WANG Y H, DENG Y F, ZHANG X H, et al. Improvement of combustion heat testing equipment of fuel-rich propellant based on boron [J]. Journal of Propulsion Technology, 2008, 29(1): 112-115.
[27]YANG X, ZHAO K, TIAN X, et al. An efficient energy characteristics and explosion heat improving method of FOX-7-based aluminized explosives [J]. FirePhys-Chem, 2021, 1(1): 1-7.
[28]黄寅生. 炸药理论[M]. 北京: 北京理工大学出版, 2016.
HUANG Y S. Explosive theory [M]. Beijing: Beijing Institute of Technology Press, 2016.
[29]MUNGAS G, FISHER D, MUNGAS C, et al. Nitrous oxide fuel blend monopropellants: EP2209876A1 [P]. 2010-07-28.
[30]LIU F S, GUO H S, SMALLWOOD G J. The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames [J]. Combustion and Flame, 2003, 133(4): 495-497.
[31]PARK J, HWANG D J, CHOI J G, et al. Chemical effects of CO2 addition to oxidizer and fuel streams on flame structure in H2-O2 counter flow diffusion flames [J]. International Journal of Energy Research, 2003, 27(13): 1205-1220.