[1]陈星见①,柳军①②,罗杰①,等.射孔弹侵彻岩层及能量转化效率研究[J].爆破器材,2024,53(03):48-57.[doi:10.3969/j.issn.1001-8352.2024.03.008]
 CHEN Xingjian,LIU Jun,LUO Jie,et al.Penetration of Perforation Charge into Rock Strata and Energy Conversion Efficiency of Jet[J].EXPLOSIVE MATERIALS,2024,53(03):48-57.[doi:10.3969/j.issn.1001-8352.2024.03.008]
点击复制

射孔弹侵彻岩层及能量转化效率研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年03
页码:
48-57
栏目:
爆炸材料
出版日期:
2024-06-04

文章信息/Info

Title:
Penetration of Perforation Charge into Rock Strata and Energy Conversion Efficiency of Jet
文章编号:
5879
作者:
陈星见柳军①②罗杰 李强周鑫钟兰少坤
①西南石油大学机电工程学院(四川成都,610500)
②成都大学机械工程学院(四川成都,610106)
③中国石油吉林油田公司扶余采油厂(吉林松原,138000)
Author(s):
CHEN Xingjian LIU Jun①② LUO Jie LI Qiang ZHOU Xinzhong LAN Shaokun
①School of Mechatronic Engineering, Southwest Petroleum University (Sichuan Chengdu, 610500)
②School of Mechanical Engeinnering, Chengdu University (Sichuan Chengdu, 610106)
③Fuyu Oil Production Plant, Jilin Oilfield Company, CNPC (Jilin Songyuan, 138000)
关键词:
射孔弹聚能射流侵彻RHT本构模型能量转化
Keywords:
perforating charge shaped jet penetration RHT constitutive model energy conversion
分类号:
TE921
DOI:
10.3969/j.issn.1001-8352.2024.03.008
文献标志码:
A
摘要:
为研究射孔弹侵彻岩层的过程及爆炸后能量的分布情况,基于对称罚函数的流固耦合算法及岩层的RHT(Redel-Hiermaier-Thoma)本构模型,借助显式非线性动力学分析程序LS-DYNA,建立了1/2 二维射孔弹空气岩层对称数值模拟模型,系统地分析了射孔弹在不同的装药类型、药型罩壁厚及锥角下射流侵彻岩层的深度及能量转化情况。研究结果表明:射孔弹主装炸药的爆速和猛度对射流侵彻岩层深度的影响显著;射孔弹炸药的爆速和猛度越高,射流的头部峰值速度越高,侵彻岩层深度越大;射孔弹主装炸药为RDX时,射流的有效能量转化率最大,其次分别为HNS、HMX。药型罩壁厚在0.6~1.5 mm范围内,适当减小厚度,可以提升射流的头部速度及岩层的穿深;但与此同时,射流的有效能量占比将降低,爆轰能量将增大。锥角在55°~ 70°范围内,适当减小锥角,射流的有效能量转化率及侵彻岩层的深度将增大,爆轰能量转化率将减小。
Abstract:
In order to study the perforation process of perforating charge into rock strata and the distribution of energy after the explosion, a fluid structure coupling algorithm based on symmetric penalty function and the RHT (Riedel-Hyermaier-Thoma) constitutive model of rock layers were used. With the explicit nonlinear dynamic analysis program LS-DYNA, a 1/2 2D symmetrical numerical simulation model of perforating charge-air-rock strata was established. The perforation depth into rock strata and energy conversion of jet were systematically analyzed under different charge types, wall thicknesses of liner, and cone angles. The research results indicate that the detonation velocity and brisance of the main explosive of the perforating charge have a significant impact on the penetration depth into rock layers of jet. The higher the detonation velocity and brisance of the explosive, the higher the peak velocity of the jet head, and the greater the penetration depth into rock strata. When the main explosive of the perforating charge is RDX, the effective energy conversion rate of the jet is the highest, followed by HNS and HMX, respectively. Within the range of 0.6-1.5 mm, appropriately reducing the wall thickness of the liner can improve the jet velocity at its front and the penetration depth into rock strata. But at the same time, the proportion of effective energy of the jet will decrease, and the detonation energy will increase. Within the range of 55°-70°, appropriately reducing the cone angle of the liner will increase the effective energy conversion rate of the jet and the penetration depth into rock strata, while the conversion rate of detonation energy will decrease.

参考文献/References:

[1]刘合, 王峰, 王毓才, 等. 现代油气井射孔技术发展现状与展望[J]. 石油勘探与开发, 2014, 41(6): 731-737.
LIU H, WANG F, WANG Y C, et al. Oil well perforation technology: status and prospects [J]. Petroleum Exploration and Development, 2014, 41(6): 731-737.
[2]LEE W H. Oil well perforator design using 2D Eulerian code [J]. International Journal of Impact Engineering, 2002, 27(5): 535-559.
[3]金玮玮, 张昭, 韩秀清, 等. 射孔枪射流形成的数值模拟与弹壳设计[J]. 塑性工程学报, 2010,17(6): 121-126.
JIN W W, ZHANG Z, HAN X Q, et al. Numerical simulation of formation of shaped charge jet and cartridge design for perforating gun [J]. Journal of Plasticity Engineering, 2010, 17(6): 121-126.
[4]潘文强, 付代轩, 赖康华, 等. 含能射孔弹双层药型罩穿孔性能研究[J]. 爆破器材, 2017, 46(2): 31-34, 38.
PAN W Q, FU D X, LAI K H, et al. Study on penetration performance of bi-layer liner in energetic penetrating charge [J]. Explosive Materials, 2017, 46(2): 31-34, 38.
[5]强洪夫, 范树佳, 陈福振, 等. 基于SPH方法的聚能射流侵彻混凝土靶板数值模拟[J]. 爆炸与冲击, 2016, 36(4): 516-524.
QIANG H F, FAN S J, CHEN F Z, et al. Numerical simulation on penetration of concrete target by shaped charge jet with SPH method[J]. Explosion and Shock Waves, 2016, 36(4): 516-524.
[6]LIU J, GUO X, LIU Z, et al. Pressure field investigation into oil & gas wellbore during perforating shaped charge explosion [J].Journal of Petroleum Science and Engineering, 2019, 172: 1235-1247.
[7]窦益华, 徐浩, 李明飞. 超深井下射孔弹侵彻超强砂岩的ALE仿真[J]. 应用力学学报, 2022,39(5): 901-907.
DOU Y H, XU H, LI M F. ALE simulation of ultra deep downhole perforating projectile penetrating super strong sandstone [J]. Chinese Journal of Applied Mechanics, 2022, 39(5): 901-907.
[8]吴焕龙, 杜明章, 杨超, 等. 射孔弹聚能射流侵彻钢靶的数值仿真与实验分析[J]. 爆破器材, 2012,41(2): 30-33.
WU H L, DU M Z, YANG C, et al. Numerical simulation and experimental analysis of shaped charge jet penetrating into steel target [J]. Explosive Materials, 2012, 41(2): 30-33.
[9]畅博, 李继东, 敬怡东, 等. 辅助药型罩材料对超聚能射流成型和侵彻能力影响的仿真研究[J]. 兵器装备工程学报, 2019,40(12): 35-39.
CHANG B, LI J D, JING Y D, et al. Numerical simulation of effect of material of additional liner on the forming and penetration of hypercumulation [J]. Journal of Ordnance Equipment Engineering, 2019, 40(12): 35-39.
[10]苏成海, 王海福, 谢剑文, 等. 活性射流作用混凝土靶侵彻与爆炸效应研究[J]. 兵工学报, 2019,40(9): 1829-1835.
SU C H, WANG H F, XIE J W, et al. Penetration and damage effects of reactive material jet against concrete target [J]. Acta Armamentarii, 2019, 40(9): 1829-1835.
[11]强洪夫, 张国星, 王广, 等. SPH方法在宽速域岩石侵彻问题中的应用[J]. 高压物理学报, 2019,33(5): 174-182.
QIANG H F, ZHANG G X, WANG G, et al. Application of SPH method for problem of rock penetration within the wide-ranged velocity [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 174-182.
[12]SUCESKA M. Evaluation of detonation energy from EXPLO5 computer code results[J]. Propellants, Explosives, Pyrotechnics, 1999, 24(5): 280285.
[13]KATAYAMA M, KIBE S, YAMAMOTO T. Numerical and experimental study on the shaped charge for space debris assessment [J]. Acta Astronautica, 2001, 48(5/6/7/8/9/10/11/12): 363-372.
[14]STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498-1504.
[15]时党勇, 李裕春, 张胜民. 基于 ANSYS/LS-DYNA 8.1进行显示动力分析[M]. 2 版. 北京: 清华大学出版社, 2005: 313-326.
SHI D Y, LI Y C, ZHANG S M. Explicit dynamic analysis based on ANSYS/LS-DYNA 8.1 [M]. 2nd ed. Beijing: Tsinghua University Press, 2005: 313-326.
[16]RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]//Proceedings of 9th International Symposium on Interaction of the Effect of Munitions with Structures. Berlin, Germany, 1999: 315-322.
[17]黄佑鹏. 基于HJC本构的岩石爆破损伤演化规律数值模拟[D]. 合肥: 合肥工业大学, 2020.
HUANG Y P. Numerical simulation of rock blasting damage evolution based on HJC constitutive mode [D]. Hefei: Hefei University of Technology, 2020.
[18]李祝军, 马磊, 李大攀, 等. 基于原位条件打靶实验的乌石区块射孔弹优选[J]. 中国石油和化工标准与质量, 2022,42(22): 136-138.
LI Z J, MA L, LI D P, et al. Optimization of perforating ammunition in Wushi block based on in situ condition targeting experiment[J]. China Petroleum and Chemical Standard and Quality, 2022, 42(22): 136-138.
[19]王军. 提高炸药威力和猛度的方法研究[J]. 爆破器材, 2005, 34(2): 16-18.
WANG J. Study on the means of improve the strength and brisance of explosive[J]. Explosive Materials, 2005, 34(2): 16-18.
[20]丁亮亮,雷七松,陈文康, 等.射孔爆轰瞬态能量转化及影响因素研究[J].中国安全科学学报, 2023, 33(9): 76-85.
DING L L, LEI Q S, CHEN W K, et al. Study on transient energy transformation and influence factor during perforation explosion [J]. China Safety Science Journal, 2023, 33(9): 76-85.
[21]牟恭雨, 罗宁, 申涛, 等. 聚能射流侵彻页岩储层损伤裂隙形成机制[J]. 爆炸与冲击, 2023,43(3): 85-101.
MU G Y, LUO N, SHEN T, et al. Mechanism of damage-induced fracture formation in shale reservoir penetrated by shaped charge jet[J]. Explosion and Shock Waves, 2023, 43(3): 85-101.

相似文献/References:

[1]朱铭颉,顾文彬,唐勇,等.炸高对侵彻效应影响试验和数值模拟研究[J].爆破器材,2010,39(02):31.
 ZHU Mingjie,GU Wenbin,TANG Yong,et al.The Experimental & Numerical Simulation of the Standoff Effect to Penetra[J].EXPLOSIVE MATERIALS,2010,39(03):31.
[2]赖康华,杜明章,雷新华,等.正交试验在粉末药型罩制造工艺参数研究中的应用[J].爆破器材,2010,39(06):34.
 LAI Kanghua,DU Mingzhang,LEI Xinhua,et al.Application of Orthogonal Design in Manufacturing Technological Parameters Study of Powder Liner[J].EXPLOSIVE MATERIALS,2010,39(03):34.
[3]吴焕龙①,杜明章①,杨超②,等.射孔弹聚能射流侵彻钢靶的数值仿真与实验分析[J].爆破器材,2012,41(02):30.
 WU Huanlong,DU Mingzhang,YANG Chao,et al.Numerical Simulation and Experimental Analysis of Shaped Charge Jet Penetrating into Steel Target[J].EXPLOSIVE MATERIALS,2012,41(03):30.
[4]付代轩,雷新华,李云.射孔弹射孔未穿孔的原因分析[J].爆破器材,2012,41(04):37.
 FU Daixuan,LEI Xinhua,LI Yun.Analysis on the Puncherless Cause of Perforating Charge[J].EXPLOSIVE MATERIALS,2012,41(03):37.
[5]李志龙,徐全军,姜楠,等.实验室聚能高速碎片生成装置设计与研究[J].爆破器材,2012,41(05):5.
 LI Zhilong,XU Quanjun,JIANG Nan,et al.Design and Research of Laboratory Hypervelocity Debris Launcher Based on Shaped Charge[J].EXPLOSIVE MATERIALS,2012,41(03):5.
[6]张子敏①,许碧英①,阎峰②,等.活性金属药型罩射孔弹破甲试验研究[J].爆破器材,2013,42(04):53.[doi:10.3969/j.issn.1001-8352.2013.04.013]
 ZHANG Zimin,XU Biying,YAN Feng,et al.Penetrating Test of Active Metal Charge Liner Perforating Bullet[J].EXPLOSIVE MATERIALS,2013,42(03):53.[doi:10.3969/j.issn.1001-8352.2013.04.013]
[7]吴焕龙.装药与药型罩分离对射孔弹穿深影响的规律研究[J].爆破器材,2014,43(01):38.[doi:10.3969/j.issn.1001-8352.2014.01.008]
 WU Huanlong.Law Study on the Influence of Charging and Liner Separation to Penetration Depth of Perforating Charge[J].EXPLOSIVE MATERIALS,2014,43(03):38.[doi:10.3969/j.issn.1001-8352.2014.01.008]
[8]李尚杰,李必红,赵云涛,等.一种破片高回收率射孔弹壳体破碎特性的设计方法研究[J].爆破器材,2014,43(06):48.[doi:10.3969/j.issn.1001-8352.2014.06.011]
 LI Shangjie,LI Bihong,ZHAO Yuntao,et al.Design Method of High Recovery of Fragments about Shell of Shaped[J].EXPLOSIVE MATERIALS,2014,43(03):48.[doi:10.3969/j.issn.1001-8352.2014.06.011]
[9]王利侠①,周涛①,贺海民①,等.聚能射流引爆屏蔽B炸药的数值模拟及试验[J].爆破器材,2015,44(05):56.[doi:10.3969/j.issn.1001-8352.2015.05.013]
 WANG Lixia,ZHOU Tao,HE Haimin,et al.Numerical Simulation and Experimental Investigation of Initiation of Shielded Composition B Impacted by Shaped Charge Jet[J].EXPLOSIVE MATERIALS,2015,44(03):56.[doi:10.3969/j.issn.1001-8352.2015.05.013]
[10]汪长栓①,王海洲②,李刚③,等.Stimstream等孔径深穿透射孔弹在页岩气井中的应用[J].爆破器材,2017,46(05):38.[doi:10.3969/j.issn.1001-8352.2017.05.008]
 WANG Changshuan,WANG Haizhou,LI Gang,et al.Application of Stimstream Shaped Charge Providing Equal Aperture and Deep Penetration in Shale Gas Reservoir[J].EXPLOSIVE MATERIALS,2017,46(03):38.[doi:10.3969/j.issn.1001-8352.2017.05.008]

备注/Memo

备注/Memo:
收稿日期:2023-08-29
基金项目:国家自然科学基金(51875489);四川省重点研发计划(2022YFQ0034)
第一作者:陈星见(1998—),男,硕士研究生,主要从事油气管柱力学方面的研究工作。E-mail:1803760703@qq.com
通信作者:柳军(1980—),男,研究员,博导,主要从事油气管柱力学和机械系统动力学方面的研究工作。E-mail:201031010081@swpu.edu.cn
更新日期/Last Update: 2024-06-04