[1]FARAMARZI F, MANSOURI H, EBRAHIMI FARSANGI M A.A rock engineering systems based model to predict rock fragmentation by blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60(8): 82-94.
[2]HASANIPANAH M, ARMAGHANI D J, MONJEZI M, et al. Risk assessment and prediction of rock fragmentation produced by blasting operation: a rock engineering system [J]. Environmental Earth Sciences, 2016, 75(9): 808.
[3]SANCHIDRIAN J A, SEGARRA P, LOPEZ L M. Energy components in rock blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(1): 130-147.
[4]周先平, 李彦坡, 吴新霞, 等. 岩体爆破块度控制技术新进展[J]. 水利水电技术, 2018, 49(增刊1): 7-13.
ZHOU X P, LI Y P, WU X X, et al. New advance of control technique for blasting fragment-size of rock mass [J]. Water Resources and Hydropower Engineering, 2018, 49(Suppl.1): 7-13.
[5]王仁超, 朱品光. 基于随机森林回归方法的爆破块度预测模型研究[J]. 水力发电学报, 2020, 39(1): 89-101.
WANG R C, ZHU P G. Study on blasting fragmentation prediction model based on random forest regression method [J]. Journal of Hydroelectric Engineering, 2020, 39(1): 89-101.
[6]顾清华, 江松, 李学现, 等. 人工智能背景下采矿系统工程发展现状与展望[J]. 金属矿山, 2022(5): 10-25.
GU Q H, JIANG S, LI X X, et al. Development status and prospect of mining system engineering under the background of artificial intelligence [J]. Metal Mine, 2022(5): 10-25.
[7]史秀志, 郭霆, 尚雪义, 等. 基于PCA-BP神经网络的岩石爆破平均粒径预测[J]. 爆破, 2016, 33(2): 55-61.
SHI X Z, GUO T, SHANG X Y, et al. Prediction of mean particle size of rock blast based on combination of PCA and BP neural networks [J]. Blasting, 2016, 33(2): 55-61.
[8]KULATILAKE P H S W, QIONG W, HUDAVERDI T, et al. Mean particle size prediction in rock blast fragmentation using neural networks [J]. Engineering Geology, 2010, 114(3/4): 298-311.
[9]唐跃, 徐曲, 柯波, 等. 基于交叉验证的矿岩爆破块度SVM模型优选研究[J]. 爆破, 2018, 35(3): 74-79.
TANG Y, XU Q, KE B, et al. Study on optimization of SVM model of rock blasting fragmentation based on cross-validation [J]. Blasting, 2018, 35(3):74-79.
[10]史秀志, 王洋, 黄丹, 等. 基于LS-SVR岩石爆破块度预测[J]. 爆破, 2016, 33(3): 36-40.
SHI X Z, WANG Y, HUANG D, et al. Prediction of rock blasting fragmentation based on LS-SVR [J]. Blasting, 2016, 33(3): 36-40.
[11]刘阳, 谭凯旋, 郭钦鹏, 等. 运用随机森林和GA-BP神经网络预测岩石爆破块度[J]. 矿业研究与开发, 2021, 41(1): 135-140.
LIU Y, TAN K X, GUO Q P, et al. Prediction for blasting fragmentation of rocks using random forest and GA-BP neural network [J].Mining Research and Development, 2021, 41(1): 135-140.
[12]柳小波, 袁鹏喆, 张兴帆. 基于RBF神经网络的露天矿爆破效果预测研究[J]. 中国矿业, 2020, 29(1): 81-84.
LIU X B, YUAN P Z, ZHANG X F. Study on blasting effect prediction of open-pit mine based on RBF neural network [J].China Mining Magazine, 2020, 29(1): 81-84.
[13]叶海旺, 胡俊杰, 雷涛, 等. LOO-XGboost模型预测岩石爆破块度[J]. 爆破, 2022, 39(1): 16-21.
YE H W, HU J J, LEI T, et al. Fragmentation prediction of rock blasting by LOO-XGboost model [J]. Blasting, 2022, 39(1): 16-21.
[14]关富僳, 吴发名, 罗志, 等. 基于灰色关联分析及GA-BP模型的岩体爆破块度预测[J]. 爆破器材, 2021, 50(4): 40-47, 53.
GUAN F S, WU F M, LUO Z, et al. Prediction of rock blasting fragmentation based on grey correlation analysis and GABP model [J]. Explosive Materials, 2021, 50(4): 40-47, 53.
[15]刘翔, 谢涛, 王训洪, 等. 基于改进随机森林算法的岩石爆破块度预测[J]. 矿业研究与开发, 2022, 42(7): 25-29.
LIU X, XIE T, WANG X H, et al. Prediction for blasting fragmentation of rocks based on improved random forest regression method [J]. Mining Research and Development, 2022, 42(7): 25-29.
[16]PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. CatBoost: unbiased boosting with categorical features [C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montreal, Canada, 2018.
[17]MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer [J]. Advances in Engineering Software, 2014, 69: 46-61.
[18]赵超, 王延峰, 林立. 基于改进灰狼算法优化核极限学习机的锂电池动力电池荷电状态估计[J]. 信息与控制, 2021, 50(6): 731-739.
ZHAO C, WANG Y F, LIN L. State of charge estimation for lithium battery based on kernel extreme learning machine optimized by improved grey wolf algorithm [J]. Information and Control, 2021, 50(6): 731-739.
[19]RODR-GUEZ L, CASTILLO O, SORIA J, et al. A fuzzy hierarchical operator in the grey wolf optimizer algorithm[J]. Applied Soft Computing, 2017, 57: 315-328.
[20]郭振洲, 刘然, 拱长青, 等. 基于灰狼算法的改进研究[J]. 计算机应用研究, 2017, 34(12): 3603-3606, 3610.
GUO Z Z, LIU R, GONG C Q, et al. Study on improvement of gray wolf algorithm [J]. Application Research of Computers, 2017, 34(12): 3603-3606, 3610.
[21]张阳, 周溪召. 求解全局优化问题的改进灰狼算法[J]. 上海理工大学学报, 2021, 43(1): 73-82.
ZHANG Y, ZHOU X Z. Modified grey wolf optimization algorithm for global optimization problems [J]. Journal of University of Shanghai for Science and Technology, 2021, 43(1): 73-82.
[22]HUDAVERDI T, KULATILAKE P H S W, KUZU C. Prediction of blast fragmentation using multivariate analysis procedures [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(12): 1318-1333.
[23]赵蒙生, 周敏, 代永新, 等. 灰色关联度对边坡稳定性的预测分析[J]. 金属矿山, 2012(10): 130-133.
ZHAO M S, ZHOU M, DAI Y X, et al. Prediction and analysis of slope stability by grey correlation [J]. Metal Mine, 2012(10): 130-133.