[1]贾进章①②,张先如①②,王枫潇①②.NH4H2PO4-KHCO3混合粉体对管网甲烷爆炸的抑制特性[J].爆破器材,2024,53(01):43-50.[doi:10.3969/j.issn.1001-8352.2024.01.007]
 JIA Jinzhang,ZHANG Xianru,WANG Fengxiao.Inhibition Properties of NH4H2PO4-KHCO3 Mixed Powder on Methane Explosion in the Pipe Network[J].EXPLOSIVE MATERIALS,2024,53(01):43-50.[doi:10.3969/j.issn.1001-8352.2024.01.007]
点击复制

NH4H2PO4-KHCO3混合粉体对管网甲烷爆炸的抑制特性()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年01
页码:
43-50
栏目:
爆炸材料
出版日期:
2024-01-19

文章信息/Info

Title:
Inhibition Properties of NH4H2PO4-KHCO3 Mixed Powder on Methane Explosion in the Pipe Network
文章编号:
5858
作者:
贾进章①②张先如①②王枫潇①②
①辽宁工程技术大学安全科学与工程学院(辽宁阜新,123000)
②辽宁工程技术大学矿山热动力灾害与防治教育部重点实验室(辽宁阜新,123000)
Author(s):
JIA Jinzhang①② ZHANG Xianru①② WANG Fengxiao①②
①College of Safety Science and Engineering, Liaoning Technical University (Liaoning Fuxin, 123000)
②Key Laboratory of Mine Thermodynamic Disasters and Control of Ministry of Education, Liaoning Technical University (Liaoning Fuxin, 123000)
关键词:
甲烷爆炸混合粉体抑爆性能混合比例实验管网
Keywords:
methane explosion mixed powder explosion suppression performance mixing ratio experimental pipe network
分类号:
TJ53.3; TQ221.1+1
DOI:
10.3969/j.issn.1001-8352.2024.01.007
文献标志码:
A
摘要:
在自行搭建的管网实验系统中,将常用于抑制甲烷爆炸的碳酸氢钾KHCO3与磷酸二氢铵NH4H2PO4进行不同比例的混合。选取5种不同的粉体配比,对比单一粉体以及各抑爆工况下各测点的爆炸峰值压力、火焰峰值速度和火焰峰值温度等爆炸特征参数,获得抑制管网甲烷爆炸的最佳工况,并阐述了抑爆机理。结果表明:混合粉体对管网甲烷爆炸的抑制性能优于单一粉体;KHCO3与NH4H2PO4都易受热分解;其中,KHCO3可以在相对较低的温度下迅速完成热解过程,从而吸收更多的反应热,抑爆性能优于NH4H2PO4粉体;混合粉体中,抑爆效果随着KHCO3含量的增加显著提高。在5种混合比例中,当KHCO3与NH4H2PO4质量比为2.0∶1.0时,抑爆效果最佳。KHCO3与NH4H2PO4表现出良好的爆炸抑制效果,研究所得结论可为抑制甲烷爆炸研究提供参考。
Abstract:
Potassium bicarbonate (KHCO3), commonly used as the methane explosion suppression, was mixed with ammonium dihydrogen phosphate (NH4H2PO4) in different proportions in a self-built pipeline experimental system. Five different powder ratios were selected to compare the explosion characteristic parameters such as peak explosion pressure, peak flame velocity, and peak flame temperature at each monitoring point under a single powder and various explosion suppression conditions. The optimal conditions for suppressing methane explosion in the pipeline network were obtained, and the explosion suppression mechanism was explained. The results show that the suppression performance of mixed powder on methane explosion in pipeline networks is better than that of the single powder. Both KHCO3 and NH4H2PO4 are prone to decomposition during heating, among which KHCO3 can quickly complete the pyrolysis process at a relatively low temperature, thereby absorbing more heat of reaction, and its explosion suppression performance is better than that of NH4H2PO4 powder. The explosion suppression effect significantly improves with the increase of concentration of KHCO3 . Among the five mixing ratios, when the mass ratio of KHCO3 to NH4H2PO4 is 2.0∶1.0, the explosion suppression effect is the best. KHCO3 and NH4H2PO4 exhibit excellent explosion suppression effects. The conclusions obtained in the study can provide theoretical support for the study on methane explosion suppression.

参考文献/References:

[1]董冰岩, 查裕学, 邹颖, 等.球形压力容器中甲烷-氢气-空气爆炸过程数值模拟及实验研究[J].中国安全生产科学技术, 2023, 19(3): 157-163.
DONG B Y, ZHA Y X, ZOU Y, et al. Numerical simulation and experimental study of methane-hydrogen-air explosion process in spherical pressure vessels [J]. Journal of Safety Science and Technology, 2023, 19(3): 157-163.
[2]LI Z, CHEN L, YAN H C, et al. Gas explosions of methane-air mixtures in a large-scale tube[J]. Fuel, 2021, 285: 119239.
[3]DONG Z Q, LIU L J, CHU Y Y, et al. Explosion suppression range and the minimum amount for complete suppression on methane-air explosion by heptafluoropropane[J]. Fuel, 2022, 328: 125331.
[4]丁超, 王信群, 徐海顺, 等.喷射超细ABC粉体对瓦斯爆炸的抑制与增强作用[J].煤炭学报, 2021, 46(6): 1799-1807.
DING C, WANG X Q, XU H S, et al. Suppression and enhancement of methane/air explosion by dischange of ultrafine ABC powders [J]. Journal of China Coal Industry, 2021, 46(6): 1799-1807.
[5]郑立刚, 王亚磊, 于水军, 等.NaHCO3抑制瓦斯爆炸火焰与压力的耦合分析[J].化工学报, 2018, 69(9): 4129-4136.
ZHENG L G, WANG Y L, YU S J, et al. Coupled relationship between flame and overpressure of gas explosion inhibited by NaHCO3[J]. CIESC Journal, 2018, 69(9): 4129-4136.
[6]JIA J Z, TIAN X Y, WANG F X. Study on the effect of KHCO3 particle size and powder spraying pressure on the methane explosion suppression characteristics of pipe networks [J]. ACS Omega, 2022, 7(36): 31974-31982.
[7]徐小猛, 汪泉, 张军, 等.典型盐粉及盐溶液对甲烷爆燃火焰传播特性的影响研究[J].煤炭工程, 2022, 54(3): 159-164.
XU X M, WANG Q, ZHANG J, et al. Influence of typical salt powder and salt solution on flame propagation characteristics of methane deflagration[J]. Coal Engineering, 2022, 54(3): 159-164.
[8]何文浩, 郝朝瑜, 张亚超, 等.硅藻土抑制瓦斯爆炸的微观机理分析[J].煤炭学报, 2022, 47(10): 3695-3703.
HE W H, HAO C Y, ZHANG Y C, et al. Microscopic mechanism analysis of inhibition on methane explosion by diatomite [J]. Journal of Coal Science, 2022, 47(10): 3695-3703.
[9]张庆利, 李孝斌, 张瑞杰, 等.尿素抑制甲烷爆炸关键基元反应机理研究[J].消防科学与技术, 2022, 41(6): 732-735.
ZHANG Q L, LI X B, ZHANG R J, et al. Study on the key element reaction of urea inhibition of methane explosion [J]. Fire Science and Technology, 2022, 41(6): 732-735.
[10]李孝斌, 张瑞杰, 孙婧雯, 等.甲烷爆炸中尿素粉体浓度对典型自由基影响研究[J].安全与环境学报, 2023, 23(4): 1093-1100.
LI X B, ZHANG R J, SUN J W, et al. Experiment of typical free radical change during urea inhibition of methane explosion[J]. Journal of Safety and Environment, 2023, 23(4): 1093-1100.
[11]罗振敏, 张江, 任军莹, 等. NH4H2PO4粉体热分解产物在瓦斯爆炸中的作用[J].煤炭学报, 2017, 42(6): 1489-1495.?
LUO Z M, ZHANG J, REN J Y, et al. Role of thermal decomposition products of NH4H2PO4 powder in gas explosion [J]. Journal of Coal Science, 2017, 42(6): 1489-1495.
[12]WANG Y, MENG X Q, JI W T, et al. The inhibition effect of gas-solid two-phase inhibitors on methane explosion[J]. Energies, 2019, 12(3): 398.
[13]苏洋, 罗振敏, 王涛. CO2/海泡石抑爆剂对氢气/甲烷爆炸特性参数的影响[J].化工进展, 2022, 41(11): 5731-5736.
SU Y, LUO Z M, WANG T. Effect of CO2/sepiolite explosion suppressants on hydrogen/methane deflagration characteristic parameters [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5731-5736.
[14]WANG F X, JIA J Z, TIAN X Y. Suppression of methane explosion in a pipe network by carbon dioxidedriven montmorillonite powder with different masses [J]. Arabian Journal of Chemistry, 2022, 5(10): 104126.
[15]LU K L, CHEN X K, LUO Z M, et al. The inhibiting effects of sodium carbonate on coal dust deflagration based on thermal methods[J]. Fuel, 2022, 315: 123122.
[16]WANG X, ZHANG Y S, LIU B, et al. Effectiveness and mechanism of carbamide/fly ash cenosphere with bilayer spherical shell structure as explosion suppressant of coal dust[J]. Journal of Hazardous Materials, 2019, 365: 555-564.
[17]ZHENG L G, LI G, WANG Y L, et al. Effect of blockage ratios on the characteristics of methane/air explosion suppressed by BC powder [J]. Journal of Hazardous Materials, 2018, 355: 25-33.
[18]XIE J B, ZHANG J Q, DING C, et al. Hydrophobic nano SiO2 as flow-enhancing additives and flame retardant synergizes with CaCO3 to suppress gas explosion[J]. RSC Advances, 2021, 11(8): 4672-4681.
[19]KRASNYANSKY M. Prevention and suppression of explosions in gas-air and dust-air mixtures using powder aerosol-inhibitor [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(6): 729-735.
[20]WANG Y, CHENG Y S, YU M G, et al. Methane explosion suppression characteristics based on the NaHCO3/red-mud composite powders with core-shell structure [J]. Journal of Hazardous Materials, 2017, 335: 84-91.
[21]YAN K, MENG X B, WANG Z, et al. Inhibition of aluminum powder explosion by a NaHCO3/kaolin composite powder suppressant [J]. Combustion Science and Technology, 2022, 194(4): 815-831.
[22]WANG X, ZHANG Y S, LIU B, et al. Effectiveness and mechanism of carbamide/fly ash cenosphere with bilayer spherical shell structure as explosion suppressant of coal dust [J]. Journal of Hazardous Materials, 2019, 365: 555-564.
[23]杨克, 王辰升, 纪虹, 等.聚多巴胺包覆混合粉体抑制甲烷爆炸的实验研究[J].化工学报, 2022, 73(9): 4245-4254.
YANG K, WANG C S, JI H, et al. Experimental study on inhibition of methane explosion by polydopamine coated mixed powder [J]. CIESC Journal, 2022, 73(9): 4245-4254.
[24]袁必和, 陶红吉, 孙亚如, 等.多孔矿物-聚磷酸铵对甲烷爆炸的协同抑制研究[J].中国安全科学学报, 2021, 31(3): 41-46.
YUAN B H, TAO H J, SUN Y R, et al. Study on synergistic suppression of methane explosion by porous mineral materials-ammonium polyphosphate composite powder [J]. Chinese Safety Science Journal, 2021,31(3): 41-46.
[25]WANG F X, JIA J Z, TIAN X Y.Performance and mechanism of bentonite in suppressing methane explosions in a pipeline network [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9: 13.
[26]李艳超, 毕明树, 高伟.耦合火焰不稳定的爆炸超压预测[J].爆炸与冲击, 2020, 40(1): 45-50.
LI Y C, BI M S, GAO W. Explosion pressure prediction considering the flame instabilities[J]. Explosion and Shock Waves, 2020, 40(1): 45-50.
[27]杜玉晶, 王亮.分岔管道内瓦斯爆炸火焰传播规律实验及数值模拟[J].重庆大学学报, 2019, 4(6): 69-77.
DU Y J, WANG L. Experimental and numerical simulation of gas propagation law of gas explosion flame in bifurcation pipelines [J]. Journal of Chongqing University, 2019, 42(6): 69-77.
[28]贾进章, 王东明, 牛鑫, 等.复杂管网中瓦斯爆炸冲击波与火焰波传播实验研究[J].煤田地质与勘探, 2022, 52(4): 84-91.
JIA J Z, WANG D M, NIU X, et al. Propagation characteristics of flame wave and shock wave during the gas explosion in complex pipeline network [J]. Coal Geology & Exploration, 2022, 52(4): 84-91.
[29]GU Z J, LIU Z T, WANG Z R, et al. Study on characteristics of methane explosion flame and pressure wave propagation to the non-methane area in a connected chamber [J]. Fire and Materials, 2021, 46(4): 639-650.
[30]蔡周全, 张引合.干粉灭火剂粒度对抑爆性能的影响[J].矿业安全与环保, 2001, 28(4): 14-16.
CAI Z Q, ZHANG Y H. Influence of particle size of dry fireextinguishing powder on explosion suppression performance [J]. Mining Safety and Environmental Protection, 2001, 28(4): 14-16.
[31]王秋红, 王二飞, 陈晓坤, 等.管道内瓦斯爆炸火焰传播压力与温度特性[J].中南大学学报(自然科学版), 2020, 51(1): 239-247.
WANG Q H, WANG E F, CHEN X K, et al. Pressure and temperature characteristics of flame propagation of gas explosion in pipeline [J]. Journal of Central South University (Natural Science Edition), 2020, 51(1): 239-247.
[32]林森. KHCO3冷气溶胶的甲烷抑爆特性研究[D]. 焦作: 河南理工大学, 2021.
LIN S. Suppression characteristics of KHCO3 cold aerosol on methane explosion[D]. Jiaozuo: He-nan Polytechnic University, 2021.
[33]王燕, 程义伸, 曹建亮, 等.核-壳型KHCO3/赤泥复合粉体的甲烷抑爆特性[J].煤炭学报, 2017, 42(3): 653-658.
WANG Y, CHENG Y S, CAO J L, et al. Suppression characteristics of KHCO3/red-mud composite powders with core-shell structure on methane explosion[J]. Journal of China Coal Industry, 2017, 42(3): 653-658.
[34]CAO X Y, BI M S, REN J J, et al. Experimental research on explosion suppression affected by ultrafine water mist containing different additives[J]. Journal of Hazardous Materials, 2019, 368: 613-620.
[35]LIU Z Q, ZHONG X X, ZHANG Q, et al. Experimental study on using water mist containing potassium compounds to suppress methane/air explosions [J]. Journal of Hazardous Materials, 2020, 394: 122561.
[36]LIN C D, QI Y Q, GAN X Y, et al. Investigation into the suppression effects of inert powders on the minimum ignition temperature and the minimum ignition energy of polyethylene dust [J]. Processes, 2020, 8(3): 294.

备注/Memo

备注/Memo:
收稿日期:2023-07-04基金项目:国家自然科学基金(52174183)第一作者:贾进章(1974—),男,博士,教授,博导,主要从事矿井瓦斯爆炸冲击波与通风动力耦合传播机理等方面的研究。E-mail:jiajinzhang@163.com通信作者:张先如(1999—),女,硕士研究生,主要研究方向为安全技术及应用。E-mail:392996844@qq.com
更新日期/Last Update: 2024-01-12