[1]HUYNH M H V, HISKEY M A, MEYER T J, et al. Green primaries: environmentally friendly energetic complexes [J]. PNAS, 2006, 103(14): 5409-5412.
[2]POLIS M, STOLARCZYK A, GLOSZ K, et al. Quo vadis, nanothermite A review of recent progress [J]. Materials, 2022, 15(9): 3215.
[3]KABRA S, GHARDE S, GORE P M, et al. Recent trends in nanothermites: fabrication, characteristics and applications [J]. Nano Express, 2020, 1(3): 032001.
[4]KHASAINOV B, COMET M, VEYSSIERE B, et al. Comparison of performance of fast-reacting nanothermites and primary explosives [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(7): 754-772.
[5]WU C W, SULLIVAN K, CHOWDHURY S, et al. Encapsulation of perchlorate salts within metal oxides for application as nanoenergetic oxidizers [J]. Advanced Functional Materials, 2012, 22(1): 78-85.
[6]ROSSI C, ZHANG K L, ESTEVE D, et al. Nanoenergetic materials for MEMS: a review [J]. Journal of Microelectromechanical Systems, 2007, 16(4): 919-931.
[7]DREIZIN E L. Metal-based reactive nanomaterials [J]. Progress in Energy and Combustion Science, 2009, 35(2): 141-167.
[8]JIAN G Q, CHOWDHURY S, SULLIVAN K, et al. Nanothermite reactions: Is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition [J]. Combustion and Flame, 2013, 160(2): 432-437.
[9]CHEN M J, ZHANG F S, ZHU J X. Detoxification of cathode ray tube glass by self-propagating process [J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 980-986.
[10]WANG Y, ZHU J X. Preparation of lead oxide nanoparticles from cathode-ray tube funnel glass by self-propagating method [J]. Journal of Hazardous Materials, 2012, 215/216: 90-97.
[11]JIAN G Q, LIU L, ZACHARIAH M R. Facile aerosol route to hollow CuO spheres and its superior performance as an oxidizer in nanoenergetic gas generators [J]. Advanced Functional Materials, 2013, 23(10): 1341-1346.
[12]YANG Y, WANG P P, ZHANG Z C, et al. Nanowire membrane-based nanothermite: towards processable and tunable interfacial diffusion for solid state reactions [J]. Scientific Reports, 2013, 3: 1694.
[13]ZHOU X, XU D G, ZHANG Q B, et al. Facile green in situ synthesis of Mg/CuO core/shell nanoenergetic arrays with a superior heat-release property and longterm storage stability [J]. ACS Applied Materials & Interfaces, 2013, 5(15): 7641-7646.
[14]SEVERAC F, ALPHONSE P, ESTEVE A, et al. High-energy Al/CuO nanocomposites obtained by DNA-directed assembly [J]. Advanced Functional Materials, 2012, 22(2): 323-329.
[15]PATEL V K, BHATTACHARYA S. High-performance nanothermite composites based on aloeveradirected CuO nanorods [J]. ACS Applied Materials & Interfaces, 2013, 5(24): 13364-13374.
[16]JIAN G Q, FENG J Y, JACOB R J, et al. Super-reactive nanoenergetic gas generators based on periodate salts [J]. Angewandte Chemie (Internatioal Edition), 2013, 52(37): 9743-9746.
[17]YAN S, JIAN G Q, ZACHARIAH M R. Electrospun nanofiber-based thermite textiles and their reactive properties [J]. ACS Applied Materials & Interfaces, 2012, 4(12): 6432-6435.
[18]ZHANG W C, YIN B Q, SHEN R Q, et al. Significantly enhanced energy output from 3D ordered macroporous structured Fe2O3/Al nanothermite film [J]. ACS Applied Materials & Interfaces, 2013, 5(2): 239-242.
[19]FENG J Y, JIAN G Q, LIU Q, et al. Passivated iodine pentoxide oxidizer for potential biocidal nanoenergetic applications [J]. ACS Applied Materials & Interfaces, 2013, 5(18): 8875-8880.
[20]杨光成, 谯志强. 亚稳态分子间复合物面临的挑战[J]. 含能材料, 2014, 22(3): 279-280.
[21]ROSSI C, EST-VE A, VASHISHTA P. Nanoscale energetic materials [J]. Journal of Physics and Chemistry of Solids, 2010, 71(2): 57-58.
[22]ROSSI C. Two decades of research on nano-energetic materials [J]. Propellants, Explosives, Pyrotechnics, 2014, 39(3): 323-327.
[23]SULLIVAN K T, PIEKIEL N W, CHOWDHURY S, et al. Ignition and combustion characteristics of nanoscale Al/AgIO3: a potential energetic biocidal system [J]. Combustion Science and Technology, 2010, 183(3): 285-302.
[24]QIAO Z Q, SHEN J P, WANG J, et al. Fast deflagration to detonation transition of energetic material based on a quasicore/shell structured nanothermite composite [J]. Composites Science and Technology, 2015, 107: 113-119.
[25]谯志强, 陈瑾, 黄兵, 等. 一种安全环保型起爆药替代物及制备方法: CN102603442B [P]. 2014-08-13.
[26]THIRUVENGADATHAN R, BEZMELNITSYN A, APPERSON S, et al. Combustion characteristics of novel hybrid nanoenergetic formulations [J]. Combustion and Flame, 2011, 158(5): 964-978.
[27]COMET M, MARTIN C, KLAUM-NZER M, et al. Energetic nanocomposites for detonation initiation in high explosives without primary explosives [J]. Applied Physics Letters, 2015, 107(24): 243108.
[28]高坤, 李国平, 罗运军, 等. 热处理对Al/Fe2O3纳米铝热剂性能的影响[J]. 火炸药学报, 2012, 35(6): 19-22.
GAO K, LI G P, LUO Y J, et al. Effect of thermal process on the properties of Al/Fe2O3 nano-thermites [J]. Chinese Journal of Explosives & Propellants, 2012, 35(6): 19-22.
[29]SHENDE R, SUBRAMANMIAN S, HASAN S, et al. Nanoenergetic composites of CuO nanorods, nanowires, and Al-nanoparticles [J]. Propellants, Explosives, Pyrotechnics, 2008, 33 (2): 122-130.
[30]GRANIER J J, PANTOYA M L. Laser ignition of nanocomposite thermites [J]. Combustion and Flame, 2004, 138(4): 373-383.
[31]黄浩, 焦清介, 李俊龙, 等. 铝粉粒度对RDX热分解动力学的影响[J]. 火炸药学报, 2011, 34(6): 48-52, 73.
HUANG H, JIAO Q J, LI J L, et al.Effect of aluminum particle size on the thermal decomposition of RDX [J]. Chinese Journal of Explosives & Propellants, 2011, 34(6): 48-52, 73.
[32]刘颖, 杨茜, 陈利平, 等. 绝热加速量热仪表征含能材料热感度的探讨[J]. 含能材料, 2011, 19(6): 656-660.?
LIU Y, YANG Q, CHEN L P, et al. Thermal sensitivity of energetic materials characterized by accelerating rate calorimeter (ARC) [J]. Chinese Journal of Energetic Materials, 2011, 19(6): 656-660.?
[33]中国兵器工业集团公司.火工品药剂试验方法: 第27部分? 静电火花感度试验: GJB 5891.27—2006 [S]. 2006.
China North Industries Group Co., Ltd. Test method of loading material for initiating explosive device: Part 27 electrostatic spark sensitivity test: GJB 5891.27—2006 [S]. 2006.
[34]陆明, 赵月兵. RDX与Al混合体系的静电火花感度研究[J]. 兵工学报, 2009, 30(12): 1602-1606.
LU M, ZHAO Y B. Research on electrostatic spark sensitivity of RDX-Al in the process of roller mixing [J]. Acta Armamentarii, 2009, 30(12): 1602-1606.