[1]李经纬①,朱晨光①②.BiOF的掺入对n-Al/CuO纳米铝热体系性能的影响[J].爆破器材,2023,52(04):20-25.[doi:10.3969/j.issn.1001-8352.2023.04.003]
 LI Jingwei,ZHU Chenguang.Effect of BiOF Addition on Properties of n-Al/CuO Nano-Thermite System[J].EXPLOSIVE MATERIALS,2023,52(04):20-25.[doi:10.3969/j.issn.1001-8352.2023.04.003]
点击复制

BiOF的掺入对n-Al/CuO纳米铝热体系性能的影响()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
52
期数:
2023年04
页码:
20-25
栏目:
基础理论
出版日期:
2023-07-19

文章信息/Info

Title:
Effect of BiOF Addition on Properties of n-Al/CuO Nano-Thermite System
文章编号:
5812
作者:
李经纬朱晨光①②
①南京理工大学化学与化工学院(江苏南京,210094)
②陕西应用物理化学研究所应用物理化学国家级重点实验室(陕西西安,710061)
Author(s):
LI Jingwei ZHU Chenguang①②
①School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
②National Key Laboratory of Applied Physics and Chemistry, Shaanxi Applied Physics and Chemistry Research Institute (Shaanxi Xi’an, 710061)
关键词:
n-Al/CuO含氟氧化剂纳米铝热剂 氟化氧化物
Keywords:
Al/CuO fluorine-containing oxidizing agent nano-thermite fluoride oxide
分类号:
TJ51
DOI:
10.3969/j.issn.1001-8352.2023.04.003
文献标志码:
A
摘要:
为了提高n-Al/CuO体系的增压能力,改善其点火性能,选用含氟氧化剂氟氧化铋(BiOF)作为典型铝热体系nAl/CuO中CuO的替代,并将BiOF成功复合于n-Al/CuO体系中。分别使用扫描电镜(SEM)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)研究了复合材料的微观结构、晶体结构特征和表面元素组成及价态。使用高速摄影、高速红外热像仪和压力传感器研究了复合体系在限制条件下的火焰传播速率、点火温度和增压性能。结果表明,BiOF可以在n-Al/CuO体系中作为CuO的良好的替代物。当BiOF的替代质量分数为9%时,体系在限制条件下的火焰传播速率从385 m/s提高至478 m/s,提高了24.1%;输出的峰值压力从1.32 MPa提高至1.51 MPa;增压速率从43 MPa提高至72 MPa;点火温度也得到显著的下降。总之,作为CuO的替代物,BiOF可以有效改善n-Al/CuO的点火性能,并提升体系在限制条件下的能量输出能力。
Abstract:
In order to improve the pressurization capacity and ignition performance of n-Al/CuO system, fluorine containing oxidant BiOF was selected as a substitute for CuO, and it was successfully composite in the typical aluminothermal system n-Al/CuO. The microstructure, crystal structure characteristics, surface element composition and valence states of the composite materials were studied using scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), respectively. The flame propagation rate, ignition temperature, and pressurization performance of the composite system under confinement conditions were studied using high-speed photography, high-speed infrared thermal imager, and pressure sensor. The results indicate that BiOF can serve as a good substitute for CuO in the n-Al/CuO system. When the mass fraction of the substituted BiOF is 9%, the flame propagation rate of the system under confinement conditions increases from 385 m/s to 478 m/s, an increase of 24.1%. The output peak pressure increased from 1.32 MPa to 1.51 MPa, and the pressurization rate increased from 43 MPa to 72 MPa, respectively. The ignition temperature has also significantly decreased. In conclusion, as a substitute for CuO, BiOF can effectively improve the ignition performance of n-Al/CuO and enhance its energy output ability under confinement conditions.

参考文献/References:

[1]KOCH E C, KNAPP S. Thermites-versatile materials[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(1): 7.
[2]ROSSI C. Al-based energetic nano materials: design, manufacturing, properties and applications[M]. John Wiley & Sons, Inc.,2015.
[3]HE W, LIU P J, HE G Q, et al. Highly reactive metastable intermixed composites (MICs): preparation and characterization[J]. Advanced Materials, 2018, 30(41): 1706293.
[4]ZHOU X, TORABI M, LU J, et al. Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications[J]. ACS applied materials & interfaces, 2014, 6(5): 3058-3074.
[5]BISWAS P, XU F Y, GHILDIYAL P, et al. In-situ thermochemical shock-induced stress at the metal/oxide interface enhances reactivity of aluminum nanoparticles[J]. ACS Applied Materials & Interfaces, 2022, 14(23): 26782-26790.
[6]MAO Y F, ZHONG L, ZHOU X, et al. 3D printing of micro-architected Al/CuO-based nanothermite for enhanced combustion performance [J]. Advanced Engineering Materials, 2019, 21(12): 1900825.
[7]VALLURI S K, SCHOENITZ M, DREIZIN E L. Ignition mechanisms of reactive nanocomposite powders combining Al, B, and Si as fuels with metal fluorides as oxidizers[J]. Combustion Science and Technology, 2021, 195(3): 597-618.
[8]GALFETTI L, DELUCA L T, SEVERINI F, et al. Pre and post-burning analysis of nano-aluminized solid rocket propellants[J]. Aerospace Science and Technology, 2007, 11(1): 26-32.
[9]VALLURI S K, SCHOENITZ M, DREIZIN E. Combustion of aluminummetal fluoride reactive composites in different environments [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(10): 1327-1336.
[10]VALLURI S K, SCHOENITZ M, DREIZIN E. Fluorine-containing oxidizers for metal fuels in energetic formulations [J]. Defence Technology, 2019, 15(1): 1-22.
[11]HUANG S D, HONG S, SU Y C, et al. Enhancing combustion performance of nano-Al/PVDF composites with β-PVDF[J]. Combustion and Flame, 2020, 219: 467-477.
[12]WANG H, REHWOLDT M, KLINE D J, et al. Comparison study of the ignition and combustion characteristics of directly-written Al/PVDF, Al/Viton and Al/THV composites[J]. Combustion and Flame, 2019, 201: 181-186.
[13]JIANG Y, WANG Y J, BACK J Y, et al. Ignition and combustion of perfluoroallkyl-functionalized aluminum nanoparticles and nanothemite [J]. Combustion and Flame, 2022, 242: 112170.
[14]XIONG K, ZHANG W, WANG Y, et al. The effects of fluoropolymers with optimized contents on reactivity and combustion behavior of Al/MxOy nanocomposites [J]. Combustion and Flame, 2023, 249: 112606.
[15]REHWOLDT M, WANG H Y, KLINE D J, et al. Ignition and combustion analysis of direct write fabricated aluminum/metal oxide/PVDF films [J]. Combustion and Flame, 2020, 211: 260-269.
[16]WANG J, CAO C, ZHANG Y, et al. Underneath mechanisms into the super effective degradation of PFOA by BiOF nanosheets with tunable oxygen vacancies on exposed (101) facets[J]. Applied Catalysis B: Environmental, 2021, 286: 119911.
[17]HU L M, DONG S Y, LI Q L, et al. Facile synthesis of BiOF/Bi2O3/reduced graphene oxide photocatalyst with highly efficient and stable natural sunlight photocatalytic performance [J]. Journal of Alloys and Compounds, 2015, 633: 256-264.
[18]GUAN Y, WANG S M, LI Z Y, et al. Polycrystalline bismuth oxyfluoride of BiO0.51F1.98?with selfdoped BiOF achieving distinctly enhanced photocatalytic activity [J]. Materials Letters, 2020, 262: 127197.
[19]LI K L, LEE W W, LU C S, et al. Synthesis of BiOBr, Bi3O4Br, and Bi12O17Br2 by controlled hydrothermal method and their photocatalytic properties [J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(5): 2688-2697.
[20]WEISMILLER M R, LEE J G, YETTER R A. Temperature measurements of Al containing nano-thermite reactions using multi-wavelength pyrometry [J]. Proceedings of the Combustion Institute, 2011, 33(2): 1933-1940.
[21]WANG J, CAO W, LIU R, et al. Graphite fluoride as a new oxidizer to construct nanoAl based reactive material and its combustion performance[J]. Combustion and Flame, 2021, 229: 111393.

备注/Memo

备注/Memo:
收稿日期:2023-02-16
基金项目:国家自然科学基金(51676100)
第一作者:李经纬(1996-),男,博士研究生,主要从事特种能源材料研究。E-mail: Learth@njust.edu.cn
通信作者:朱晨光(1967-),男,教授,主要从事特种能源材料和无源光电对抗技术研究。E-mail: zcg_lnkz@163.com
更新日期/Last Update: 2023-07-19