[1]梁浩哲,张玉磊,苏健军,等.近壁面深水爆炸气泡射流演化特性的研究[J].爆破器材,2024,53(01):9-15,22.[doi:10.3969/j.issn.1001-8352.2024.01.002]
 LIANG Haozhe,ZHANG Yulei,SU Jianjun,et al.Evolution Characteristics of Bubble Jet during Deep-Underwater Explosion near the Rigid Wall[J].EXPLOSIVE MATERIALS,2024,53(01):9-15,22.[doi:10.3969/j.issn.1001-8352.2024.01.002]
点击复制

近壁面深水爆炸气泡射流演化特性的研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年01
页码:
9-15,22
栏目:
基础理论
出版日期:
2024-01-19

文章信息/Info

Title:
Evolution Characteristics of Bubble Jet during Deep-Underwater Explosion near the Rigid Wall
文章编号:
5810
作者:
梁浩哲张玉磊苏健军李芝绒甘云丹
西安近代化学研究所(陕西西安, 710065)
Author(s):
LIANG Haozhe ZHANG Yulei SU Jianjun LI Zhirong GAN Yundan
Xi’an Modern Chemistry Research Institute (Shaanxi Xi’an, 710065)
关键词:
深水爆炸气泡射流近壁面
Keywords:
deep-underwater explosion bubble jet near the rigid wall
分类号:
O382+.1
DOI:
10.3969/j.issn.1001-8352.2024.01.002
文献标志码:
A
摘要:
近壁面气泡载荷是水中战斗部对障碍物毁伤作用的重要载荷之一。以近壁面深水爆炸气泡脉动及射流载荷特征问题为中心,开展了模拟300 m水深环境下的爆炸实验。通过高速摄影仪得到了气泡射流的演化过程;利用Autodyn轴对称模型对气泡射流的演化过程进行了计算,分析了比例距离对气泡脉动周期、射流演化形成时刻及射流强度特征的影响;探讨了壁面近场范围内的压力特征,总结得到射流载荷的演化规律。可为深水环境下水中战斗部对障碍物的毁伤效应研究提供理论参考。
Abstract:
The bubble load near the wall is one of the important loads for underwater warheads to damage obstacles.Focusing on the characteristics of bubble pulsation and jet load in deep-water explosions near the rigid wall, explosion experiments were conducted to simulate a water depth environment of 300 meters. Using the high speed camera, the evolution of bubble jet was obtained. The evolution process of bubble jet was calculated using the Autodyn axisymmetric model, and the influence of scaled distance on bubble pulsation period, jet evolution formation time, and jet intensity characteristics was analyzed. The pressure characteristics within the near-field range of the wall were explored, and the evolution law of jet load was summarized. It can provide theoretical reference for study on the damage effect of warheads on obstacles in deep water environments.

参考文献/References:

[1]COLE H R. Underwater explosions[M]. Princeton, NJ, US: Princeton University Press,1948.
[2]冯凇, 饶国宁, 彭金华. 含铝炸药深水爆炸冲击波和气泡脉动的数值模拟[J]. 爆破器材, 2017, 46(5): 1-7.
FENG S, RAO G N, PENG J H, et al. Numerical simulation of shock wave and bubble pulse in deep water explosion of aluminized explosive [J]. Explosive Materials, 2017, 46(5): 1-7.
[3]伍俊, 杨益, 庄铁栓. 水中爆炸作用机理及毁伤效应研究综述[J]. 火炸药学报, 2016, 39(1): 1-13.
WU J, YANG Y, ZHAG T S. A review of research on action mechanism and damage effect of underwater explosion [J]. Chinese Journal of Explosives & Propellants, 2016, 39(1): 1-13.
[4]刘磊, 王远, 张成良, 等. 深水静压下化学敏化乳化炸药爆炸能量的输出特性[J]. 爆破器材, 2022, 51(3): 28-32.
LIU L, WANG Y, ZHANG C L, et al. Output characteristics of explosion energy of chemically sensitized emul-sion explosive under static pressure in deep water[J]. Explosive Materials, 2022, 51(3): 28-32.
[5]BENJAMIN T B, ELLIS A T. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries [J]. Philosophical Transactions of the Royal Society B Biological Sciences, 1966, 260(1110):221-240.
[6]BLAKE J R, TAIB B B, DOHERTY G. Transient cavities near boundaries. Part 2: free surface [J]. Journal of Fluid Mechanics, 1987, 181: 197-212.
[7]KUCERA A, BLAKE J R. Approximate methods for modelling cavitation bubbles near boundaries [J]. Bulletin of the Australian Mathematical Society, 1990, 41(1): 1-44.
[8]KLASEBOER E, HUNG K C, WANG C, et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure [J]. Journal of Fluid Mechanics, 2005, 537: 387-413.
[9]CUI P, ZHANG A M, WANG S P. Small-charge underwater explosion bubble experiments under various boundary conditions [J]. Physics of Fluids, 2016, 28(11): 117103.
[10]ZHANG A M, CUI P, CUI J, et al. Experimental study on bubble dynamics subject to buoyancy [J]. Journal of Fluid Mechanics, 2015, 776: 137-160.
[11]杜志鹏, 汪玉, 辛春亮. 水下刚性壁装药爆炸气泡简化模型和数值仿真[J]. 计算机仿真, 2009, 26(4):10-13, 17.
DU Z P, WANG Y, XIN C L. Simplified bubble dynamic model and numerical simulation of charge underwater explosion on a fixed rigid floor [J]. Computer Simulation, 2009, 26(4): 10-13, 17.
[12]卢熹, 王树山, 马峰, 等. 近小尺度壁面水下爆炸射流特性数值模拟[J]. 弹箭与制导学报, 2015, 35(3): 79-84.
LU X, WANG S S, MA F, et al. Numerical study on characteristics of underwater explosion jet near small scale wall [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(3): 79-84.
[13]张伟, 岳永威, 张阿漫, 等. 基于AUTODYN的气泡与固定壁面相互作用数值模拟[J]. 中国舰船研究, 2012, 7(6): 23-30.
ZHANG W, YUE Y W, ZHANG A M, et al. Numerical simulation of underwater explosion bubble interactions with a solid boundary based on AUTODYN[J]. Chinese Journal of Ship Research, 2012, 7(6): 23-30.

相似文献/References:

[1]冯凇,饶国宁,彭金华.含铝炸药深水爆炸冲击波和气泡脉动的数值模拟[J].爆破器材,2017,46(05):1.[doi:10.3969/j.issn.1001-8352.2017.05.001]
 FENG Song,RAO Guoning,PENG Jinhua.Numerical Simulation of Shock Wave and Bubble Pulse in Deep Water Explosion of Aluminized Explosive[J].EXPLOSIVE MATERIALS,2017,46(01):1.[doi:10.3969/j.issn.1001-8352.2017.05.001]

备注/Memo

备注/Memo:
收稿日期:2023-12-04
第一作者:梁浩哲(1988—),男,博士,副研究员,主要研究方向为毀伤评估。E-mail: haozheliang2010@yeah.net
更新日期/Last Update: 2024-01-11