[1]赵立财①②.基于模糊层次和改进灰色关联度耦合算法的隧道爆破风险评价[J].爆破器材,2023,52(06):48-54.[doi:10.3969/j.issn.1001-8352.2023.06.008]
 ZHAO Licai.Risk Assessment of Tunnel Blasting Based on Coupling Algorithm of Fuzzy Hierarchy and Improved Grey Relevance[J].EXPLOSIVE MATERIALS,2023,52(06):48-54.[doi:10.3969/j.issn.1001-8352.2023.06.008]
点击复制

基于模糊层次和改进灰色关联度耦合算法的隧道爆破风险评价()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
52
期数:
2023年06
页码:
48-54
栏目:
爆破技术
出版日期:
2023-12-05

文章信息/Info

Title:
Risk Assessment of Tunnel Blasting Based on Coupling Algorithm of Fuzzy Hierarchy and Improved Grey Relevance
文章编号:
5794
作者:
赵立财①②
①台湾科技大学营建工程系(台湾台北,10607)
②中铁十九局集团第三工程有限公司(辽宁沈阳,110136)
Author(s):
ZHAO Licai ①②
①Department of Civil and Construction Engineering, National Taiwan University of Science and Technology (Taiwan Taipei, 10607)
②Third Engineering Co., Ltd., China Railway 19th Bureau Group Co., Ltd. (Liaoning Shenyang, 110136)
关键词:
改进灰色关联度模糊多层次隧道爆破风险评价
Keywords:
improved grey relevance fuzzy multi-level tunnel blasting risk assessment
分类号:
TD235.4
DOI:
10.3969/j.issn.1001-8352.2023.06.008
文献标志码:
A
摘要:
在隧道开挖过程中,对隧道掌子面爆破工程进行风险因子的识别及评价,可以达到评价整个隧道施工安全风险的目的。以石柱至黔江高速公路万寿山隧道为研究对象,从影响隧道爆破安全的角度出发,确定4个一级指标和14个二级指标。然后,结合模糊理论和改进灰色关联度分析方法,建立了模型矩阵以及模糊互补矩阵,确定了各因子的权重和矩阵特征向量。最后,再运用模糊理论多层次分析方法对隧道爆破施工风险开展评价,确定了各风险分级。结果表明:各因子的权重由大至小依次为掌子面爆破、爆破管理、地质条件、爆破设计。同时,隧道爆破风险综合等级为高风险;各一级指标中,地质条件为高风险,掌子面爆破为极高风险,爆破管理和爆破设计为中风险。基于风险类型和风险评价结果,可制定分级管控措施及北斗一体化监测系统方案,实时了解隧道围岩变形情况,实行风险分级管控,为隧道开挖动态施工的安全提供保障。
Abstract:
During the excavation process of the tunnel, the safety risks of the entire tunnel construction can be evaluated by identifying and evaluating the risk factors in the blasting engineering of the tunnel face. Taking Wanshoushan Tunnel on the Shizhu-Qianjiang Expressway as the research object, from the perspective of affecting tunnel blasting safety, four first-level indicators and 14 second-level indicators were determined. Then, the model matrix and fuzzy complementarity matrix were established using the coupling theory of fuzzy hierarchy and improved grey correlation degree, and the weights of each factor and matrix eigenvectors were determined. Finally, the fuzzy multi-level method was used to evaluate the risk of tunnel blasting construction, and the classification of each risk was also determined. The results show that the weights of each factor, from highest to lowest, are tunnel face blasting, blasting management, geological conditions, and blasting design. The comprehensive risk level of tunnel blasting is high risk. Among the first level indicators, geological conditions are at high risk, tunnel face blasting is at extremely high risk, and blasting management and design are at medium risk. Based on risk types and risk assessment results, graded control measures and Beidou integrated monitoring system schemes can be developed to understand tunnel deformation in real-time, implement risk graded control, and provide security for dynamic construction of tunnel excavation.

参考文献/References:

[1]KIM M S, KIM C Y, SONG M K, et al. Assessment of the blasting efficiency of a long and largediameter uncharged hole boring method in tunnel blasting using 3D numerical analysis [J]. Sustainability, 2022, 14(20): 13347.
[2]GUO D, XIAO W H, GUO D, et al. Numerical simulation of surface vibration propagation in tunnel blasting [J]. Mathematical Problems in Engineering, 2022, 2022(3): 3748802.
[3]LEI M F, HE R, LIU L H, et al. Mechanical mechanism and shaping effect of tunnel blasting construction in rock with weak interlayer [J]. Sustainability, 2022, 14(20):13278.
[4]GUAN X M, YANG N, ZHANG W J, et al. Vibration response and failure modes analysis of the temporary support structure under blasting excavation of tunnels [J]. Engineering Failure Analysis, 2022, 136: 106188.
[5]叶海旺, 付威志, 李宁, 等. 基于HAZOP与模糊理论的台阶爆破安全综合评价[J]. 爆破, 2020, 37(1): 152-158.
YE H W, FU W Z, LI N, et al. Comprehensive evaluation of bench blasting safety based on HAZOP & fuzzy theory [J]. Blasting, 2020, 37(1): 152-158.
[6]于丽, 路明, 王明年, 等. 基于改进灰色关联度法对超小净距交叉隧道爆破施工研究[J]. 现代隧道技术, 2021, 58(增刊1): 336-341.
YU L, LU M, WANG M N, et al. Study on blasting construction of super-closely-spaced cross tunnel based on improved grey relational analysis [J]. Modern Tunnelling Technology, 2021, 58(Suppl.1): 336-341.
[7]段军, 焦登铭, 张轰玉, 等. 融合权重和模糊综合在爆破方案优选中的应用[J]. 中国矿业, 2020, 29(12): 176-182.
DUAN J, JIAO D M, ZHANG H Y, et al. Application of integrated weight and fuzzy synthesis in blasting scheme optimum selection [J]. China Mining Magazine, 2020, 29(12): 176-182.
[8]瞿东明, 邬林宏, 张晓峰, 等. 恩贡山隧道爆破震害对地面建筑影响的安全评价[J]. 湖南大学学报(自然科学版), 2018, 45(增刊): 133-137.
QU D M, WU L H, ZHANG X F, et al. Safety evaluation on influence of blasting damage of Ngong Tunnel on surface structures [J]. Journal of Hunan University (Natural Sciences), 2018, 45(Suppl.): 133-137.
[9]陈绍辉, 张贤康, 石波, 等. 隧道爆破施工对邻近隧道安全性的影响研究[J]. 公路交通技术, 2016, 32(6): 100-105.
CHEN S H, ZHANG X K, SHI B, et al. Study on the influence of tunnel blasting on the safety of adjacent tunnels [J]. Journal of Highway and Transport, 2016, 32(6): 100-105.
[10]李梓源, 王海亮. 基于灰色关联度分析法的浅埋隧道围岩稳定性研究[J]. 安全与环境学报, 2017, 17(6): 2079-2082.
LI Z Y, WANG H L. Study on surrounding rock stability of shallow tunnel based on grey correlation analysis [J]. Journal of Safety and Environment, 2017, 17(6): 2079-2082.
[11]王志杰, 李昭, 马德林, 等. 基于灰色理论的雪山梁隧道施工过程渗漏水水源识别研究[J]. 隧道建设, 2017, 37(1): 24-29.
WANG Z J, LI Z, MA D L, et al. Research on water source identification of water leakage during construction of Xueshanliang Tunnel based on grey theory [J]. Tunnel Construction, 2017, 37(1): 24-29.
[12]吴波, 陈辉浩, 黄惟. 基于熵权模糊理论的上软下硬地层隧道施工风险评价[J]. 铁道科学与工程学报, 2021, 18(4): 1056-1063.
WU B, CHEN H H, HUANG W. Safety risk assessment of tunnel construction in upper-soft and lower-hard composite strata based on entropy method and fuzzy evaluation theory [J]. Journal of Railway Science and Engineering, 2021, 18(4): 1056-1063.
[13]姜安民, 董彦辰, 张晓波, 等. 基于粗糙集与模糊理论的公路隧道塌方风险评价[J]. 公路与汽运, 2020(3): 156-160.
[14]李凌志, 周骏, 滕鸣翰, 等. 基于层次分析法的超大隧道断面多准则优化分析[J]. 交通科技, 2022(4): 119-124.
LI L Z, ZHOU J, TENG M H, et al. Multi criteria optimization analysis of super large tunnel section based on analytic hierarchy process [J]. Transportation Science & Technology, 2022(4): 119-124.
[15]李鹏飞, 李康宁, 赵晓勇, 等. 基于层次分析法的铁路隧道装配式二次衬砌分块方案研究[J]. 隧道建设(中英文), 2021, 41(增刊2): 92-99.
LI P F, LI K N, ZHAO X Y, et al. Block division scheme for prefabricated secondary lining in railway tunnel based on analytic hierarchy process [J]. Tunnel Construction, 2021, 41(Suppl.2): 92-99.
[16]国家安全生产监督管理局. 爆破安全规程: GB 6772—2014 [S]. 北京: 中国标准出版社, 2014.
State Administration of Work Safety. Safety regulations for blasting: GB 6772—2014 [S]. Beijing: Standards Press of China, 2014.
[17]公路水运工程施工安全风险评估指南: JT/T 1375.5—2022 [S]. 北京: 人民交通出版社股份有限公司, 2022.
Guideline for safety risk assessment of Highway and waterway Engineering construction: JT/T 1375.5—2022 [S]. Beijing: Peoples Communications Press Co., Ltd., 2022.
[18]KINGSLEY L J, LILL M A. Including ligand-induced protein flexibility into protein tunnel prediction [J]. Journal of Computational Chemistry, 2014, 35(24): 1748-1756.
[19]MELO J J C D, GON-ALVES J R, BRANDO L M S, et al. Evaluation of lipase access tunnels and analysis of substance transport in comparison with experimental data [J]. Bioprocess and Biosystems Engineering, 2022, 45: 1149-1162.

备注/Memo

备注/Memo:
收稿日期:2022-11-07
基金项目:辽宁省“兴辽英才计划青年拔尖人才”资助项目(XLYC2007146);中铁十九局集团有限公司科技研究开发计划项目(2021-B03)
第一作者:赵立财(1985-), 男,博士,正高级工程师,主要从事地下工程岩石破坏机制、混凝土结构的损伤力学及灾变防治理论方面的研究。E-mail: zhaolicai1314@foxmail.com
更新日期/Last Update: 2023-12-04