[1]李贺楠,祖旭东.圆柱形装药在土壤-混凝土复合介质靶中的爆炸开坑规律[J].爆破器材,2023,52(04):51-57.[doi:10.3969/j.issn.1001-8352.2023.04.008]
 LI He-nan,ZU Xudong.The Law of Explosion Pit Opening of Cylindrical Charge in Soil-Concrete Composite Medium Targets[J].EXPLOSIVE MATERIALS,2023,52(04):51-57.[doi:10.3969/j.issn.1001-8352.2023.04.008]
点击复制

圆柱形装药在土壤-混凝土复合介质靶中的爆炸开坑规律()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
52
期数:
2023年04
页码:
51-57
栏目:
爆炸材料
出版日期:
2023-07-19

文章信息/Info

Title:
The Law of Explosion Pit Opening of Cylindrical Charge in Soil-Concrete Composite Medium Targets
文章编号:
5771
作者:
李贺楠祖旭东
南京理工大学机械工程学院(江苏南京,210094)
Author(s):
LI He-nanZU Xudong
School of Mechanical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
圆柱形装药土壤混凝土爆炸冲击波埋药深度
Keywords:
cylindrical charge soil-concrete explosion shock wave burial depth
分类号:
TQ560.7; O383+.2
DOI:
10.3969/j.issn.1001-8352.2023.04.008
文献标志码:
A
摘要:
为了探究炸药在土壤-混凝土复合防护工事的表层土壤的爆炸开坑情况及最佳爆破深度,在土壤-混凝土复合介质与单土壤介质两种条件下,对JH-2圆柱形装药在不同埋药深度中的爆炸进行了数值模拟。研究了药柱爆炸后爆坑的形成和发展规律。在8种不同埋药深度及有、无混凝土层的情况下,对比分析了爆坑的形状及尺寸。通过理论计算,得到80 g JH-2药柱在土中抛掷爆破时爆坑的最大半径及相应的埋药深度。对比研究了相同药量、不同埋药深度时土壤与土壤-混凝土两种工况下的爆坑形状与尺寸大小。结果表明:混凝土层反射的冲击波可以对土壤层表面进行二次破坏,使得爆坑的崩落区明显变大。通过试验验证发现,在埋药深度为350 mm时,80 g JH-2圆柱形装药可以在土壤-混凝土复合介质靶中形成一个大且稳定的爆坑,爆坑的形状、尺寸与仿真和理论计算结果吻合。
Abstract:
In order to investigate the explosive excavation situation and optimal blasting depth in the surface soil of the soil-concrete composite protective fortifications, numerical simulations were conducted on the explosion of JH-2 cylindrical charges at different burial depths under two conditions: soil-concrete composite medium and soil medium. The formation and development laws of explosive pits after the explosion of explosive column were studied. Shapes and sizes of the explosion pits were compared and analyzed under eight different burial depths and with or without concrete layers. By theoretical calculation, the maximum radius of the explosion pit and corresponding burial depth during cast blasting of 80 g JH-2 charge in soil were obtained. A comparative study was conducted on the shape and size of blast pits in soil and soilconcrete under two working conditions, with the same amount of explosives and different burial depths. The results indicate that the shock waves reflected by the concrete layer can cause secondary damage to the surface of the soil layer, making the collapse area of the blasting pit significantly larger. Through experimental verification, it was found that at a burial depth of 350 mm, the 80 g JH-2 cylindrical charge can form a large and stable explosion pit in the soil-concrete composite medium target. The shape and size of the explosion pit are consistent with simulation and theoretical calculation results.

参考文献/References:

[1]张伟, 刘杰, 韩旭, 等. 土中爆炸成腔问题中确定炸点状态的一种计算反求方法[J]. 爆炸与冲击, 2013, 33(3): 231-237.
ZHANG W, LIU J, HAN X, et al. A computational inverse technique for determination of detonator status in underground explosion [J]. Explosion and Shock Waves, 2013, 33(3): 231-237.
[2]王羽, 高康华. 土中爆炸波与地下结构相互作用计算方法研究综述[J].爆炸与冲击, 2015, 35(5): 703-710.
WANG Y, GAO K H. Review on calculation methods for interaction between explosion waves in soil and underground structures [J]. Explosion and Shock Waves, 2015, 35(5): 703-710.
[3]LANGEOPE D B, FORRESTAL M J. Penetration of targets described by a Mhor-Coulomb failure criterion with a tension cutoff [J]. Journal of Applied Mechanics, 1983, 50(2): 327-333.
[4]FORRESTAL M J. Penetration into dry porous rock [J]. International Journal of Solids and Structures, 1986, 22(12): 1485-1500.
[5]穆朝民, 任辉启, 辛凯, 等. 变埋深条件下土中爆炸成坑效应[J]. 解放军理工大学学报(自然科学版), 2010, 11(2): 112-116.
MU C M, REN H Q, XIN K, et al. Effects of crater formed by explosion in soils [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(2):112-116.
[6]周向阳. 炸药在土壤内部爆炸作用的数值分析[J]. 爆破器材, 2011, 40(6): 12-14, 18.
ZHOU X Y. Numerical analysis on explosion of explosive in soil [J]. Explosive Materials, 2011, 40(6): 12-14, 18.
[7]江水德, 江婕瑞. 常规爆炸作用下土中浅埋高强混凝土结构试验[J]. 防护工程, 2018, 40(3): 1-4.
JIANG S D, JIANG J R. Test of shallow-buried high-strength concrete structure under blast loading [J]. Protective Engineering, 2018, 40(3): 1-4.
[8]刘伟, 郑毅, 程先有. 基于ANSYS/LS-DYNA的土中爆炸数值模拟[G]//刘代志. 国家安全地球物理丛书(七): 地球物理与核探测. 西安: 西安地图出版社, 2011: 306-310.
LIU W, ZHENG Y, CHENG X Y. Numerical simulation of explosion in soil using ANSYS/LS-DYNA [G]//LIU D Z. National Security Geophysics Series (VII): Geophysics and Nuclear Exploration. Xi’an: Xi’an Map Press, 2011: 306-310.
[9]徐学勇, 武金贵, 李炜, 等. 饱和土中爆炸应力波传播特性研究[J]. 爆破, 2013, 30(1): 54-57.
XU X Y, WU J G, LI W, et al. Study on characteristics of explosion stress wave propagation in saturated soil [J]. Blasting, 2013, 30(1): 54-57.
[10]赵均海, 冯红波, 田宏伟, 等. 土中爆炸作用的数值分析[J]. 建筑科学与工程学报, 2011, 28(1): 96-99, 117.
ZHAO J H, FENG H B, TIAN H W, et al. Numerical analysis of explosion process in soil [J]. Journal of Architecture and Civil Engineering, 2011, 28(1): 96-99, 117.
[11]柳锦春, 方秦, 还毅, 等. 炸药地面接触爆炸下土中感生地冲击的实用计算方法[J]. 解放军理工大学学报(自然科学版), 2010, 11(2): 121-124.
LIU J C, FANG Q, HUAN Y, et al. Practicable calculating method of indirect ground shock in soil at surface contact explosion [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(2): 121-124.
[12]陈建军. 某单兵末修火箭破甲弹及其引信相关技术研究[D]. 南京: 南京理工大学, 2015.
[13]高光发. 波动力学基础[M]. 北京: 科学出版社, 2019.GAO G F. Foundations of waves mechanics [M]. Beijing: Science Press, 2019.

备注/Memo

备注/Memo:
收稿日期:2022-10-14
基金项目:国家自然科学基金(11872214)
第一作者:李贺楠(1997-),男,硕士,主要从事高效毁伤和防护研究。E-mail:2945055885@qq.com
通信作者:祖旭东(1983-),男,副教授,主要从事高效毁伤和防护研究。E-mail:zuxudong9902@mail.njust.edu.cn
更新日期/Last Update: 2023-07-19