[1]EL-SAYED S A. Review of thermal decomposition, kinetics parameters and evolved gases during pyrolysis of energetic materials using different techniques [J]. Journal of Analytical and Applied Pyrolysis, 2022, 161: 105364.
[2]李国新,程国元,焦清介.火工品实验与测试技术[M].北京: 北京理工大学出版社, 1998: 15-20.
[3]COOPER P W. Explosives engineering [M]. New York: VCH Publishers, Inc., 1997: 83-89.
[4]中国兵器工业总公司. 炸药试验方法:GJB 772A—97 [S]. 北京:国防科工委军标发行部, 1997.
NORINCO. Explosive test method: GJB 772A—97 [S]. Beijing: Military Standard Publishing and Distribution Department of COSTIND, 1997.
[5]陈捷, 张朝阳. 炸药5秒延滞期爆发点的测量不确定度评定[J]. 计量与测试技术, 2009, 36(7): 63-64.
CHEN J, ZHANG C Y. Evaluation of uncertatinty in the determination of the 5 s explosion temperature of explosive[J]. Metrology & Measurement Technique, 2009,36(7): 63-64.
[6]肖忠良.火炸药导论[M].北京:国防工业出版社,2020: 260-268.
[7]SANTIAGO , RAZO-HERN-NDEZ R S, PASTOR N. Revealing the structural contributions to thermal adaptation of the TATA-box binding protein: molecular dynamics and QSPR analyses [J]. Journal of Chemical Information and Modeling, 2020, 60: 866-879.
[8]QIN S Y, JIN T Y, LEHN R C V, et al. Predicting critical micelle concentrations for surfactants using graph convolutional neural networks [J]. Journal of Physical Chemistry B, 2021, 125(37): 10610-10620.
[9]MATHIEU D. Sensitivity of energetic materials: theoretical relationships to detonation performance and molecular structure[J]. Industrial & Engineering Chemistry Research, 2017, 56(29): 8191-8201.
[10]FAYET G, KNORR A, ROTUREAU P. First QSPR models to predict the thermal stability of potential selfreactive substances [J]. Process Safety and Environmental Protection, 2022, 163: 191-199.
[11]DUCAMP M, COUDERT F. Prediction of thermal properties of zeolites through machine learning[J]. The Journal of Physical Chemistry C, 2022, 126(3): 1651-1660.
[12]第五机械工业部第二零四研究所. 火炸药手册: 第一分册[M]. 1981: 3-179.
[13]韦爱勇. 单质与混合火工药剂[M].哈尔滨: 哈尔滨工程大学出版社, 2014: 24-182.
[14]SHAHLAIE M,FASSIHI A, POURHOSSEIN A, et al. Statistically validated QSAR study of some antagonists of the human CCR5 receptor using least square support vector machine based on the genetic algorithm and factor analysis [J]. Medicinal Chemistry Research, 2013, 22: 1399-1414.
[15 ] ARORA A, LIN T S, REBELLO N J, et al. Random forest predictor for diblock copolymer phase behavior[J]. ACS Macro Letters, 2021, 10(11): 1339-1345.
[16]张学工,汪小我.模式识别: 模式识别与机器学习[M]. 北京: 清华大学出版社, 2021: 120-137.
ZHANG X G, WANG X W. Pattern recognition: pattern recognition and machine learning [M]. Beijing: Tsinghua University Press, 2021: 120-137.
[17]LI Y, FEI C H, MAO C Q, et al. Physicochemical parameters combined flash GC e-nose and artificial neural network for quality and volatile characterization of vinegar with different brewing techniques [J]. Food Chemistry, 2022, 374: 131658.
[18]时静洁. 有机物的结构与粘度等安全参数的定量构效关系模型研究[D]. 南京: 南京理工大学, 2015.
SHI J J. Researches on the quantitative relationship models between structures and viscosity and other safety parameters of organic compounds [D]. Nanjing: Nanjing University of Science and Technology, 2015.
[19]钱博文, 陈利平, 陈网桦. 基于遗传算法的人工神经网络预测多硝基化合物撞击感度[J].含能材料, 2016, 24(7): 644-650.
QIAN B W, CHEN L P, CHEN W H. Prediction of impact sensitivity of polynitro compounds by artificial neural network based on the genetic algorithm [J]. Chinese Journal of Energetic Materials, 2016, 24(7): 644-650.
[20]HAO S, HAN X, LIU H, et al. Prediction and sensitivity analysis of the cetane number of different biodiesel fuels using an artificial neural network [J]. Energy & Fuels, 2021, 35(21): 17711-17720.
[21]蔺向阳,郑文芳.火药学[M].北京: 化学工业出版社, 2020: 240-250.
[22]CHIRICO N, GRAMATICA P. Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection [J]. Journal of Chemical Information and Modeling, 2012, 52(8): 2044-2058.
[23]CHIAPPINI F A, ALLEGRINI F, GOICOECHEA H C, et al. Sensitivity for multivariate calibration based on multilayer perceptron artificial neural networks [J]. Analytical Chemistry, 2020, 92 (18): 12265-12272.
[24]时静洁, 陈利平, 陈网桦. 基于迭代自组织数据分析算法与蚁群算法建立有机物黏度的QSPR模型[J]. 物理化学学报, 2014, 30(5): 803-810.
SHI J J, CHEN L P, CHEN W H. QSPR models of compound viscosity based on iterative self-organizing data analysis technique and ant colony algorithm [J].? Acta Physico-Chimica Sinica, 2014, 30(5): 803-810.