[1]李孝兰. 空腔解耦爆炸实验研究的基础理论(I)[J]. 爆炸与冲击, 2000, 20(2): 186-192.
LI X L. Basic theory of decoupled explosions in cavities (I)[J]. Explosion and Shock Waves, 2000, 20(2): 186-192.
[2]何增, 浦锡锋, 王海兵, 等. 基于量纲分析法的地运动折合位移势规律研究[J].石家庄铁道大学学报(自然科学版), 2020, 33(4): 115-124.
HE Z, PU X F, WANG H B, et al. Regularity study on reduced displacement potential of ground motion based on dimensional analysis method [J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2020, 33(4): 115-124.
[3]王占江. 岩土中填实与空腔解耦爆炸的化爆模拟实验研究[D]. 长沙: 国防科技大学, 2003: 68-70.
WANG Z J. Experimental investigation on tamped and cavity decoupled explosion in rock-soil by mili-explosive charge[D]. Changsha: National University of Defense Technology, 2003: 68-70.
[4]ZHU J B, LI Y S, WU S Y, et al. Decoupled explosion in an underground opening and dynamic responses of surrounding rock masses and structures and induced ground motions: a FEM-DEM numerical study[J]. Tunnelling and Underground Space Technology, 2018, 82: 442-454.
[5]STEVENS J L, GIBBONS S, RIMER N, et al. Analysis and simulation of chemical explosions in nonspherical cavities in granite [J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B4): B04306.
[6]GITTERMAN Y, HOFSTETTER R, PINSKY V. Depth-of-burial and decoupling explosion experiments in Israel: near-source and near-regional seismic energy generation[C]//29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies. Albuquerque, NM, US, 2012.
[7]李婷婷, 费爱萍, 牛雪峰, 等. 不同炸药对花岗岩不同位置爆破的数值模拟[J]. 工程爆破, 2019, 25(4): 8-15.
LI T T, FEI A F, NIU X F, et al. Numerical simulation of blasting at different positions of granite by different explosives [J]. Engineering Blasting, 2019, 25(4): 8-15.
[8]崔小杰, 张孙嘉, 张国伟. 基于AUTODYN的复合防护结构数值模拟[J]. 爆破器材, 2019, 48(1): 52-57.
CUI X J, ZHANG S J, ZHANG G W. Numerical simulation of composite protective structure based on AUTODYN[J]. Explosive Materials, 2019, 48(1): 52-57.
[9]杜修力, 廖维张, 田志敏, 等.炸药爆炸作用下地下结构的动力响应分析[J].爆炸与冲击, 2006, 26(5): 474-480.
DU X L, LIAO W Z, TIAN Z M, et al. Dynamic response analysis of underground structures under explosion induced loads [J]. Explosion and Shock Waves, 2006, 26(5): 474-480.
[10]洪武, 周健南, 徐迎, 等.拱形结构爆炸作用荷载分布规律研究[J].岩土力学, 2012, 33(11): 3407-3413, 3418.
HONG W, ZHOU J N, XU Y, et al. Research on distribution laws of blast load on arch structure [J]. Rock and Soil Mechanics, 2012, 33(11): 3407-3413, 3418.
[11]刘佳鑫, 李秀地, 许珂, 等.温压炸药爆炸作用下坑道衬砌动力响应研究[J].兵器装备工程学报, 2019, 40(3): 87-91.
LIU J X, LI X D, XU K, et al. Dynamic response study of tunnel lining for explosion of thermobaric explosives[J]. Journal of Ordnance Equipment Engineering, 2019, 40(3): 87-91.
[12]中华人民共和国水利部. 工程岩体分级标准: GB/T 50218—2014[S]. 北京: 中国计划出版社, 2014: 22.
Ministry of Water Resources of the People’s Republic of China. Standard for engineering classification of rock mass: GB/T 50218—2014[S]. Beijing: China Planning Press, 2014: 22.
[13]楼沩涛, 田兵, 辛建文. 硬岩中地下爆炸的自由场位移衰减规律[J]. 爆炸与冲击, 1991, 11(2): 146-152.
LOU W T, TIAN B, XIN J W. The free-field displacement of underground explosion in hard rock [J]. Explosion and Shock Waves, 1991, 11(2): 146-152.
[14]US Army Engineers Waterways Experimental Station. Fundamentals of protective design for conventional weapons: TM5-855-1[R]. Washington DC, US: Department of the Army, 1986: 54.
[15]程树范, 叶阳, 曾亚武, 等. 基于损伤虚拟张拉裂纹模型的地下爆炸围岩破坏规律研究[J]. 爆炸与冲击, 2022, 42(5): 055201.
CHENG F S, YE Y, ZENG Y W, et al. Failure law of surrounding rock under underground explosion based on a new damage-virtual tensile crack model [J]. Explosion and Shock Waves, 2022, 42(5): 055201.
[16]国家安全生产监督管理局. 爆破安全规程: GB 6722—2014[S]. 北京:中国标准出版社, 2014: 43.
State Administration of Work Safety. Blasting safety regulations: GB 6722—2014 [S]. Beijing: Standards Press of China, 2014: 43.
[17]WU C Q, HAO H. Numerical study of characteristics of underground blast induced surface ground motion and their effect on above-ground structures. Part I. Ground motion characteristics[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(1): 27-38.