[1]年鑫喆①②③,谢全民①②③,孙金山①②,等.岩体中空腔对爆炸振动的解耦效应[J].爆破器材,2023,52(01):44-49.[doi:10.3969/j.issn.1001-8352.2023.01.008]
 NIAN Xinzhe,XIE Quanmin,SUN Jinshan,et al.Numerical Simulation of Decoupling Effect of Cavity in Rock Mass on Explosion Vibration[J].EXPLOSIVE MATERIALS,2023,52(01):44-49.[doi:10.3969/j.issn.1001-8352.2023.01.008]
点击复制

岩体中空腔对爆炸振动的解耦效应()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
52
期数:
2023年01
页码:
44-49
栏目:
爆破技术
出版日期:
2023-01-08

文章信息/Info

Title:
Numerical Simulation of Decoupling Effect of Cavity in Rock Mass on Explosion Vibration
文章编号:
5757
作者:
年鑫喆①②③谢全民①②③孙金山①②仇志龙
①江汉大学精细爆破国家重点实验室(湖北武汉,430056)
②江汉大学爆破工程湖北省重点实验室(湖北武汉,430056)
③江汉大学湖北(武汉)爆炸与爆破技术研究院(湖北武汉,430056)
④中铁一局集团铁路建设有限公司(陕西咸阳,712000)
Author(s):
NIAN Xinzhe①②③ XIE Quanmin①②③ SUN Jinshan①② QIU Zhilong
① State Key Laboratory of Precision Blasting, Jianghan University (Hubei Wuhan, 430056)
② Hubei Key Laboratory of Blasting Engineering, Jianghan University (Hubei Wuhan, 430056)
③ Hubei (Wuhan) Institute of Explosion and Blasting Technology, Jianghan University (Hubei Wuhan, 430056)
④ Railway Construction Engineering Co., Ltd., China Railway First Group (Shaanxi Xianyang, 712000)
关键词:
岩体空腔爆炸振动振速解耦
Keywords:
rock mass cavity explosion vibration vibration velocity decoupling
分类号:
O382
DOI:
10.3969/j.issn.1001-8352.2023.01.008
文献标志码:
A
摘要:
为分析岩体中空腔对爆炸振动的解耦效应,采用数值模拟方法,分析炸药耦合程度和岩体等级对岩体中空腔内爆炸振速解耦的影响规律。结果表明:岩体中振速随炸药耦合程度的降低而减小。数值模拟得到:I级岩体中空腔比例半径为1.0 m/kg1/3时,岩体中各测点峰值振速与填实爆炸峰值振速之比的平均值为0.112;I级到IV级岩体对应的爆炸振速衰减指数逐渐增大,代表振速衰减变快;坚硬完整的岩体对爆炸振速的解耦效果较好,I级到IV级岩体对应的解耦系数中的指数分别为0.259、0.258、0.246、0.219。可为城市地下空间内偶然性爆炸效应分析和城市地下工程结构的隔振设计提供参考。
Abstract:
In order to analyze the decoupling effect of the cavity in rock mass on explosion vibration, numerical simulation method was used to analyze the influence of explosive coupling degree and rock mass grade on the decoupling of explosion vibration velocity of cavity in rock mass. The results show that vibration velocity in rock mass decreases with the decrease of the coupling degree of the explosive. When the scaled radius of the cavity in Grade I rock mass is 1.0 m/kg1/3, the average value of the ratio of cavity explosion velocity to filling explosion velocity is 0.112. Decay exponents of explosion vibration velocity corresponding to Grade I to Grade IV rock mass gradually increase, that is, the vibration velocity decays faster. The decoupling effect of the hard and complete rock mass on the explosion vibration velocity is better, and the exponents of the decoupling coefficients corresponding to the rock masses of Grades I to Grade IV are 0.259, 0.258, 0.246 and 0.219, respectively. It can provide a reference for the analysis of accidental explosion effects in urban underground space and the seismic isolation design of urban underground engineering structures.

参考文献/References:

[1]李孝兰. 空腔解耦爆炸实验研究的基础理论(I)[J]. 爆炸与冲击, 2000, 20(2): 186-192.
LI X L. Basic theory of decoupled explosions in cavities (I)[J]. Explosion and Shock Waves, 2000, 20(2): 186-192.
[2]何增, 浦锡锋, 王海兵, 等. 基于量纲分析法的地运动折合位移势规律研究[J].石家庄铁道大学学报(自然科学版), 2020, 33(4): 115-124.
HE Z, PU X F, WANG H B, et al. Regularity study on reduced displacement potential of ground motion based on dimensional analysis method [J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2020, 33(4): 115-124.
[3]王占江. 岩土中填实与空腔解耦爆炸的化爆模拟实验研究[D]. 长沙: 国防科技大学, 2003: 68-70.
WANG Z J. Experimental investigation on tamped and cavity decoupled explosion in rock-soil by mili-explosive charge[D]. Changsha: National University of Defense Technology, 2003: 68-70.
[4]ZHU J B, LI Y S, WU S Y, et al. Decoupled explosion in an underground opening and dynamic responses of surrounding rock masses and structures and induced ground motions: a FEM-DEM numerical study[J]. Tunnelling and Underground Space Technology, 2018, 82: 442-454.
[5]STEVENS J L, GIBBONS S, RIMER N, et al. Analysis and simulation of chemical explosions in nonspherical cavities in granite [J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B4): B04306.
[6]GITTERMAN Y, HOFSTETTER R, PINSKY V. Depth-of-burial and decoupling explosion experiments in Israel: near-source and near-regional seismic energy generation[C]//29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies. Albuquerque, NM, US, 2012.
[7]李婷婷, 费爱萍, 牛雪峰, 等. 不同炸药对花岗岩不同位置爆破的数值模拟[J]. 工程爆破, 2019, 25(4): 8-15.
LI T T, FEI A F, NIU X F, et al. Numerical simulation of blasting at different positions of granite by different explosives [J]. Engineering Blasting, 2019, 25(4): 8-15.
[8]崔小杰, 张孙嘉, 张国伟. 基于AUTODYN的复合防护结构数值模拟[J]. 爆破器材, 2019, 48(1): 52-57.
CUI X J, ZHANG S J, ZHANG G W. Numerical simulation of composite protective structure based on AUTODYN[J]. Explosive Materials, 2019, 48(1): 52-57.
[9]杜修力, 廖维张, 田志敏, 等.炸药爆炸作用下地下结构的动力响应分析[J].爆炸与冲击, 2006, 26(5): 474-480.
DU X L, LIAO W Z, TIAN Z M, et al. Dynamic response analysis of underground structures under explosion induced loads [J]. Explosion and Shock Waves, 2006, 26(5): 474-480.
[10]洪武, 周健南, 徐迎, 等.拱形结构爆炸作用荷载分布规律研究[J].岩土力学, 2012, 33(11): 3407-3413, 3418.
HONG W, ZHOU J N, XU Y, et al. Research on distribution laws of blast load on arch structure [J]. Rock and Soil Mechanics, 2012, 33(11): 3407-3413, 3418.
[11]刘佳鑫, 李秀地, 许珂, 等.温压炸药爆炸作用下坑道衬砌动力响应研究[J].兵器装备工程学报, 2019, 40(3): 87-91.
LIU J X, LI X D, XU K, et al. Dynamic response study of tunnel lining for explosion of thermobaric explosives[J]. Journal of Ordnance Equipment Engineering, 2019, 40(3): 87-91.
[12]中华人民共和国水利部. 工程岩体分级标准: GB/T 50218—2014[S]. 北京: 中国计划出版社, 2014: 22.
Ministry of Water Resources of the People’s Republic of China. Standard for engineering classification of rock mass: GB/T 50218—2014[S]. Beijing: China Planning Press, 2014: 22.
[13]楼沩涛, 田兵, 辛建文. 硬岩中地下爆炸的自由场位移衰减规律[J]. 爆炸与冲击, 1991, 11(2): 146-152.
LOU W T, TIAN B, XIN J W. The free-field displacement of underground explosion in hard rock [J]. Explosion and Shock Waves, 1991, 11(2): 146-152.
[14]US Army Engineers Waterways Experimental Station. Fundamentals of protective design for conventional weapons: TM5-855-1[R]. Washington DC, US: Department of the Army, 1986: 54.
[15]程树范, 叶阳, 曾亚武, 等. 基于损伤虚拟张拉裂纹模型的地下爆炸围岩破坏规律研究[J]. 爆炸与冲击, 2022, 42(5): 055201.
CHENG F S, YE Y, ZENG Y W, et al. Failure law of surrounding rock under underground explosion based on a new damage-virtual tensile crack model [J]. Explosion and Shock Waves, 2022, 42(5): 055201.
[16]国家安全生产监督管理局. 爆破安全规程: GB 6722—2014[S]. 北京:中国标准出版社, 2014: 43.
State Administration of Work Safety. Blasting safety regulations: GB 6722—2014 [S]. Beijing: Standards Press of China, 2014: 43.
[17]WU C Q, HAO H. Numerical study of characteristics of underground blast induced surface ground motion and their effect on above-ground structures. Part I. Ground motion characteristics[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(1): 27-38.

备注/Memo

备注/Memo:
收稿日期:2022-07-05
基金项目:国家自然科学基金(51808554);湖北省重点研发计划(2020BCA084、2021BAD004);江汉大学湖北(武汉)爆炸与爆破技术研究院博士科研启动基金(PBSKL-2022-QD-07)
第一作者:年鑫喆(1982-),男,博士,讲师,主要从事爆炸毁伤及防护研究。E-mail:nianxz@jhun.edu.cn
更新日期/Last Update: 2023-01-07