[1]先明春①②,谢浚尧②,王成玲②,等.考虑压缩空气边界的爆炸箔起爆器飞片运动模型[J].爆破器材,2023,52(02):1-7.[doi:10.3969/j.issn.1001-8352.2023.02.001]
 XIAN Mingchun,XIE Junyao,WANG Chengling,et al.A Motion Model of Flyer in Exploding Foil Initiator Considering Compressed Air Boundary[J].EXPLOSIVE MATERIALS,2023,52(02):1-7.[doi:10.3969/j.issn.1001-8352.2023.02.001]
点击复制

考虑压缩空气边界的爆炸箔起爆器飞片运动模型()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
52
期数:
2023年02
页码:
1-7
栏目:
基础理论
出版日期:
2023-03-30

文章信息/Info

Title:
A Motion Model of Flyer in Exploding Foil Initiator Considering Compressed Air Boundary
文章编号:
5748
作者:
先明春①②谢浚尧王成玲陈云波吴立志沈瑞琪
①南京理工大学化学与化工学院(江苏南京,210094)
②四川航天川南火工技术有限公司(四川泸州,646000)
Author(s):
XIAN Mingchun①② XIE Junyao WANG Chengling CHEN Yunbo WU Lizhi SHEN Ruiqi
① School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
② Sichuan Aerospace Chuannan Pyrotechnics Technology Co., Ltd. (Sichuan Luzhou, 646000)
关键词:
爆炸箔飞片运动模型压缩空气边界
Keywords:
exploding foil a motion model of flyer compressed air boundary
分类号:
TJ45;TQ565
DOI:
10.3969/j.issn.1001-8352.2023.02.001
文献标志码:
A
摘要:
为了研究爆炸箔起爆器中的飞片运动规律,对爆炸桥箔蒸气驱动飞片的过程机理进行了研究。在假设爆炸箔电爆炸后形成的蒸气均匀膨胀以及飞片进行一维刚体运动的基础上,考虑桥箔蒸气内部的压力梯度,引入了压缩空气边界条件,进行飞片运动速度的计算,得到特定发火电路中以桥箔长度、桥箔厚度、飞片厚度以及发火电压为自变量的飞片运动速度模型。根据实测飞片速度的PDV(光子多普勒测速仪)测试结果,引入能量利用率对飞片运动速度曲线进行修正,并且拟合得到了能量利用率关于上述4种自变量的经验公式。结果表明:电爆炸推动飞片运动过程中,能量利用率与桥箔厚度和飞片厚度正相关,而与桥箔长度和发火电压负相关;初期,桥箔蒸气内部具有明显的压力梯度,最大压力可达10 GPa数量级;压缩空气段长度随着时间由0逐渐增大;在桥箔长度与加速膛厚度之比为0.4~1.2、桥箔厚度与加速膛厚度之比为0.002~ 0.010、飞片厚度与加速膛厚度之比为0.025~0.160的范围内,减小桥箔长度、桥箔厚度以及飞片厚度对提高加速膛出口飞片速度、降低爆炸箔起爆器的发火能量具有积极的作用。
Abstract:
In order to study the motion law of flyer in exploding foil initiator (EFI), the process mechanism of flyer driven by exploding bridge foil steam was studied. Assuming the uniform expansion of the steam formed after the electric explosion of the exploding foil and the one-dimensional rigid body movement of the flyer, and considering the pressure gradient inside the bridge foil steam, the boundary condition of compressed air was introduced to calculate the velocity of the flyer. The flyer velocity model with the width of bridge foil, thickness of bridge foil, thickness of impactor and firing voltage as independent variables under a specific firing circuit was obtained. According to the PDV test results of the flyer velocity, the energy utilization rate was introduced to modify motion velocity curves of flyer , and the empirical formula of the energy utilization rate about the above four independent variables was obtained by fitting.Results indicate that the energy utilization rate is positively correlated with the thickness of bridge foil and the thickness of flyer, but inversely correlated with the length of bridge foil and the firing voltage during the process of electric explosion driving the flyer. There is a significant pressure gradient inside the bridge foil steam at the initial stage, and the maximum pressure peak can reach up to 10 GPa orders of magnitude. The length of compressed air section increases from 0 gradually with time. In the range of the ratio of bridge foil length to the thickness of accelerating chamber is 0.4-1.2, the ratio of bridge foil thickness to the thickness of accelerating chamber is 0.002-0.010, and the ratio of flyer thickness to the thickness of accelerating chamber is 0.025-0.160, reducing the length, thickness of bridge foil and the thickness of flyer has a positive effect on improving the velocity of flyer at the exit of accelerating chamber and reducing the ignition energy of EFI.

参考文献/References:

[1]陈清畴, 马弢, 李勇.爆炸箔起爆器作用机理研究进展[J]. 含能材料, 2019, 27(1): 79-88.
CHEN Q C, MA T, LI Y. Research progress in the function mechanism of exploding foil initiator [J]. Chinese Journal of Energetic Materials, 2019, 27(1): 79-88.
[2]TUCKER T J, STANTON P L. Electrically gurney energy: a new conception in modeling of energy transfer from electrically exploded conductors: SAND-75-0244[R]. US Energy Research and Development Administration, 1975.
[3]王治平. 飞片雷管中飞片直径对飞片速度的影响[J]. 爆炸与冲击, 1983(2): 83-86.
WANG Z P. The effect of the diameter on the flyer velocity of a slapper detonator [J]. Explosion and Shock Waves, 1983(2): 83-86.
[4]SCHMIDT S C, SEITZ W L, WACKERIE J. An empirical model to compute the velocity histories of flyers driven by electrically exploding foils: LA-6809[R]. Los Alamos, NM,US: Los Alamos Scientific Laboratory of the University of California, 1977 .
[5]耿春余. 电爆炸箔加速塑料飞片速度分析[J]. 含能材料, 1995, 3(2): 37-42.
GENG C Y. Velocity analysis of a plastic flayer accelerated by an electrically exploded metal foil [J]. Chinese Journal of Energetic Materials, 1995, 3(2): 37-42.
[6]胡晓棉, 冯长根, 曾庆轩, 等. 电爆炸箔加速飞片的动力学模型[J]. 火工品, 2003(1): 41-44.
HU X M, FENG C G, ZENG Q X, et al. Dynamic model of accelerating flyer with electric exploding foil [J]. Initiators & Pyrotechnics, 2003(1): 41-44.
[7]曾庆轩, 赵彦, 梁琦, 等. 金属箔电爆炸驱动飞片模型的设计及应用[J]. 火炸药学报, 2008, 31(6): 50-53.
ZENG Q X, ZHAO Y, LIANG Q, et al. Design and application of flyer velocity model accelerated by electric exploding foil [J]. Chinese Journal of Explosive & Propellants, 2008, 31(6): 50-53.
[8]贺佳, 赵剑衡, 谭福利, 等. 电爆炸箔驱动绝缘飞片的一维数值模拟[J]. 高压物理学报, 2009, 23(6): 476-480.
HE J, ZHAO J H, TAN F L, et al. One-dimensional numerical simulation of a flyer accelerated by electrically exploded metal foil [J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 476-480.
[9]梁龙河, 范中波, 胡晓棉. 电爆炸箔加速飞片的数值模拟研究[J]. 兵工学报, 1999, 20(2): 102-107.
LIANG L H, FAN Z B, HU X M. Research on a flyer accelerated by electrically exploded metal foil by means of numerical simulation [J]. Acta Armamentarii, 1999, 20(2): 102-107.
[10]邱林俊, 胡云钦, 李东, 等. 基于电能的桥箔爆炸FIRESET模型修正[J]. 火工品, 2016(1): 6-10.
QIU L J, HU Y Q, LI D, et al. Modification of fireset model of exploding foil based on energy [J]. Initiators & Pyrotechnics, 2016(1): 6-10.
[11]赵彦, 曾庆轩, 袁士伟. 爆炸箔起爆系统能量转换模型的研究[J]. 火工品, 2009(4): 5-8.
ZHAO Y, ZENG Q X, YUAN S W. Study of theoretical model for energy conversion of exploding foil initiation systems [J]. Initiators & Pyrotechnics, 2009(4): 5-8.
[12]北京工业学院八系《爆炸及其作用》编写组. 爆炸及其作用[M]. 北京: 国防工业大学出版社, 1979.
[13]钱石川, 甘强, 任志伟, 等. HNSIV炸药一维冲击起爆判据的研究[J]. 含能材料, 2018, 26(6): 495-501.
QIAN S C, GAN Q, REN Z W, et al. Study on onedimensional shock initiation criterion of HNS-IV explosive [J]. Chinese Journal of Energetic Materials, 2018, 26(6): 495-501.
[14]钱石川, 甘强, 任志伟, 等. 爆炸箔起爆器发火阈值影响因素的数值模拟[J]. 含能材料, 2018, 26(3): 248-254.
QIAN S C, GAN Q, REN Z W, et al. Numerical simulation of the factors affection the ignition threshold of an exploding foil initiator [J]. Chinese Journal of Energetic Materials, 2018, 26(3): 248-254.

相似文献/References:

[1]袁玉红①②,张胜③,昂扬②,等.一种直列式起爆装置的结构设计与性能研究[J].爆破器材,2023,52(04):30.[doi:10.3969/j.issn.1001-8352.2023.04.005]
 YUAN Yuhong,ZHANG Sheng,ANG Yang,et al.Structural Design and Performance Study on an In-Line Detonation Device[J].EXPLOSIVE MATERIALS,2023,52(02):30.[doi:10.3969/j.issn.1001-8352.2023.04.005]

备注/Memo

备注/Memo:
收稿日期:2022-06-24
第一作者:先明春(1982-),男,博士研究生,主要从事航天火工品、电子电路方面的研究。E-mail:380768767@qq.com
通信作者:谢浚尧(1990-),男,硕士,主要从事点火起爆、机械设计方面的研究。E-mail:xiejunyaoshiwo@126.com
更新日期/Last Update: 2023-03-30