[1]AZADMANJIRI J, BERNDT C C, WANG J Y, et al. Nanolaminated composite materials: structure, interface role and applications [J]. RSC Advances, 2016, 6(111): 109361-109385.
[2]TATON G, LAGRANGE D, CONEDERA V, et al. Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane [J]. Journal of Micromechanics and Microengineering, 2013, 23(10): 105009.
[3]BICKES R W,Jr, GRUBELICH M C, WACKERBARTH D E, et al. A low-ignition energy, SCB, thermite igniter:SAND-96-0480C;CONF96071221[R]//22nd International Pyrotechnics Seminar. Fort Collins, CO,US, 1996.
[4]BENSON D A, LARSEN M E, RENLUND A M, et al. Semiconductor bridge: a plasma generator for the ignition of explosives [J]. Journal of Applied Physics, 1987, 62(5): 1622-1632.
[5]HE W, LIU P J, HE G Q, et al. Highly reactive metastable intermixed composites (MICs): preparation and characterization [J]. Advanced Materials, 2018, 30(41): 1706293.?
[6]ZHOU X, TORABI M, LU J, et al. Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications [J]. ACS Applied Materials & Interfaces, 2014, 6(5): 3058-3074.
[7]XU J B, ZHOU Y X, SHEN Y, et al. Characteristics of micro energetic semiconductor bridge initiator by depositing Al/MoO3 reactive multilayered films on micro bridge with different bridge size [J]. Sensors and Actuators A: Physical, 2022, 336: 113406.
[8]DUTRO G M, YETTER R A, RISHA G A, et al. The effect of stoichiometry on the combustion behavior of a nanoscale Al/MoO3 thermite [J]. Proceedings of the Combustion Institute, 2009, 32(2): 1921-1928.?
[9]BARAS F, TURLO V, POLITANO O, et al. SHS in Ni/Al nanofoils: a review of experiments and molecular dynamics simulations [J]. Advanced Engineering Materials, 2018, 20(8): 1800091.
[10]DREIZIN E L. Metal-based reactive nanomaterials [J]. Progress in Energy and Combustion Science, 2009, 35(2): 141-167.
[11]张彬, 褚恩义, 任炜, 等. MEMS火工品换能元的研究进展[J]. 含能材料, 2017, 25(5): 428-436.
ZHANG B, CHU E Y, REN W, et al. Research progress in energy conversion components for MEMS initiating explosive device [J]. Chinese Journal of Energetic Materials, 2017, 25(5): 428-436.
[12]YU T, XU J B, WANG F, et al. Experimental and modeling investigation on the selfpropagating combustion behavior of Al-MoO3 reactive multilayer films [J]. Journal of Applied Physics, 2018, 123(23): 235302.
[13]ROSSI C. Two decades of research on nano-energetic materials [J]. Propellants, Explosives, Pyrotechnics, 2014, 39(3): 323-327.
[14]SHI A R, ZHANG W, SHEN R Q. Self-propagating combustion simulation of sputter-deposited nano-energetic multilayer films [J]. Journal of Physics: Conference Series, 2021, 1721(1): 012003.
[15]MARIN L, NANAYAKKARA C E, VEYAN J F, et al. Enhancing the reactivity of Al/CuO nanolaminates by Cu incorporation at the interfaces [J]. ACS Applied Materials & Interfaces, 2015, 7(22): 11713-11718.
[16]杨腾龙, 沈云, 代骥, 等. 一种Ni-Cr@Al/CuO钝感含能元件的制备及性能 [J]. 含能材料, 2019, 27(10): 830-836.
YANG T L, SHEN Y, DAI J, et al. Fabrication and characterization of a Ni-Cr@Al/CuO insensitive energetic element [J]. Chinese Journal of Energetic Materials, 2019, 27(10): 830-836.
[17]SHEN Y, XU J B, WANG C A, et al. Ignition characteristics of energetic nichrome bridge initiator based on Al/CuO reactive multilayer films under capacitor discharge and constant current conditions [J]. Sensors and Actuators A: Physical, 2020, 313: 112200.
[18]SHI A R, ZHENG H, CHEN Z Y, et al. Exploring the interfacial reaction of nano Al/CuO energetic films through thermal analysis and Ab initio molecular dynamics simulation [J]. Molecules, 2022, 27(11): 3586.