[1]王昱琛①,杨仕教①,郭钦鹏①,等.基于MPA-SVM的煤矿抛掷爆破爆堆形态预测[J].爆破器材,2023,52(01):58-64.[doi:10.3969/j.issn.1001-8352.2023.01.010]
 WANG Yuchen,YANG Shijiao,GUO Qinpeng,et al.Prediction of Blasting Muckpile Morphology in Throw Blasting of Coal Mine Based on MPA-SVM[J].EXPLOSIVE MATERIALS,2023,52(01):58-64.[doi:10.3969/j.issn.1001-8352.2023.01.010]
点击复制

基于MPA-SVM的煤矿抛掷爆破爆堆形态预测()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
52
期数:
2023年01
页码:
58-64
栏目:
爆破技术
出版日期:
2023-01-08

文章信息/Info

Title:
Prediction of Blasting Muckpile Morphology in Throw Blasting of Coal Mine Based on MPA-SVM
文章编号:
5732
作者:
王昱琛杨仕教郭钦鹏尹裕①②
①南华大学资源环境与安全工程学院(湖南衡阳,421000)
②中钢集团马鞍山矿山研究总院股份有限公司(安徽马鞍山,243000)
Author(s):
WANG Yuchen YANG Shijiao GUO Qinpeng YIN Yu①②
① School of Recourse Environment and Safety Engineering, University of South China (Hu’nan Hengyang, 421000)
② Maanshan General Institute of Mining Research Co., Ltd., Sinosteel Group Co., Ltd. (Anhui Maanshan, 243000)
关键词:
煤矿抛掷爆破爆堆形态预测MPASVMWeibull模型
Keywords:
throw blasting of coal mine prediction of blast muckpile morphology MPA-SVM Weibull model
分类号:
TD235
DOI:
10.3969/j.issn.1001-8352.2023.01.010
文献标志码:
A
摘要:
为提高爆堆形态预测精度,提出了一种海洋捕食者算法(MPA)优化支持向量机(SVM)的方法,结合黑岱沟露天煤矿爆破工程数据,选取其中8个参数作为影响爆堆形态的输入参数,松散系数ξ和Weibull函数的2个控制变量αβ为输出参数,建立基于MPA-SVM的爆堆形态预测模型,并与同期使用的5个模型进行比较。结果表明:MPA-SVM的预测效果优于其他5个模型,相对误差未超过5%,3个评价指标分别为R2(0.955,0.978,0.946),RMSE(0.063,0.075,0.116),RMAE(0.046,0.056,0.067),证明了MPA-SVM对爆堆形态预测的适用性,且在小样本数据条件下更具有精度优势。
Abstract:
In order to improve the prediction accuracy of blast muckpile morphology, a support vector machine (SVM) optimization method based on marine predator algorithm (MPA) was proposed. Combined with the blasting engineering data of Heidaigou Open-Pit Mine, eight parameters were selected as the input parameters affecting the morphology of blast muckpile, looseness coefficient ξ and two control variables α?and β?of Weibull function were chosen as the output parameters, and the MPA-SVM prediction model of blast muckpile morphology was established. Prediction results of MPA-SVM model were compared with those of the other five models. It shows that the prediction results of MPA-SVM model is better than those of the other models, its relative error does not exceed 5%, and the three evaluation indexes are R2(0.955,0.978,0.946), RMSE(0.063,0.075,0.116), and RMAE?(0.046,0.056,0.067).It is proved that MPA-SVM model is applicable to prediction of blast muckpile morphology, and it has more accuracy advantages under the condition of small sample data.

参考文献/References:

[1]陈庆凯, 赵文龙, 郭赵杰, 等.基于模糊神经网络爆破效果评价模型[J].工程爆破, 2019, 25(4): 74-79.
CHEN Q K, ZHAO W L, GUO Z J, et al. Blasting effect evaluation model based on fuzzy neural network [J]. Engineering Blasting, 2019, 25(4): 74-79.
[2]马力, 李天翔, 来兴平, 等.基于Fourier级数的露天矿抛掷爆破效果GALSSVM预测[J/OL].煤炭学报. http: //doi.org/10.13225/j.cnki.jccs.2021. 1832.
MA L, LI T X, LAI X P, et al. Genetic algorithm optimization and least squares support vector machine prediction of blasting casting effect in open-pit mine based on fourier series[J/OL]. Journal of China Coal Society. http: //doi.org/10.13225/j.cnki.jccs.2021. 1832.
[3]CHESKIDOV V I, TSYMBALYUK T A, REZNIK A V. Enhancing efficiency of direct dumping by cast blasting of overburden rocks [J]. Journal of Mining Science, 2020, 56(2): 246-251.
[4]CHEN M, WEI D, YI C P, et al. Failure mechanism of rock mass in bench blasting based on structural dynamics[J]. Bulletin Engineering Geology and the Environment, 2021, 80: 6841-6861.
[5]李胜林, 王宗睿, 孙建成, 等.基于无人机航测的露天矿爆堆形态与延期间隔的研究[J].爆破, 2021, 38(1): 70-74.
LI S L, WANG Z R, SUN J C, et al. Blasting shape and delay interval of open pit mine based on UVA aerial survey [J]. Blasting, 2021, 38(1): 70-74.
[6]齐留洋, 郭建新, 顾春雷.基于Weibull模型的爆堆形态神经网络预测[J].有色金属(矿山部分), 2019, 71(3): 92-95.
QI L Y, GUO J X, GU C L. Prediction of blastheap morphology based on Weibull model [J]. Nonferrous Metals(Mining Section), 2019, 71(3): 92-95.
[7]韩亮, 毕文广, 李红江.基于Weibull模型的爆堆形态主要影响因素的灰色关联分析[J].矿业研究与开发, 2011, 31(5): 112-115, 120.
HAN L, BI W G, LI H J. Grey correlation analysis on main factors influencing the shape of blasted stockpile based on Weibull model [J]. Mining Research and Development, 2011, 31(5): 112-115,120.
[8]李志航, 周永利, 付相超.基于Weibull模型的BP神经网络在黑岱沟露天煤矿爆堆预测中的应用研究[J].露天采矿技术, 2012(5): 27-29.
[9]刘希亮, 赵学胜, 陆锋, 等.基于GA-SVM的露天矿抛掷爆破抛掷率预测[J].煤炭学报, 2012, 37(12): 1999-2005.
LIU X L, ZHAO X S, LU F, et al. A GA-SVM based model for throwing rate prediction in the open-pit cast blasting[J]. Journal of China Coal Society, 2012, 37(12): 1999-2005.
[10]温廷新, 陈晓宇, 邵良杉, 等.参数优化GA-ELM模型在露天煤矿抛掷爆破的预测[J].煤炭学报, 2017, 42(3): 630-638.
WEN T X, CHEN X Y, SHAO L S, et al. Prediction on parameters optimized GAELM model for cast blasting in open-pit mine[J]. Journal of China Coal Society, 2017, 42(3): 630-638.
[11]FARAMARZI A, HEIDARINEJAD M, MIRJALILI S, et al. Marine predators algorithm: a nature-inspired metaheuristic[J]. Expert Systems with Applications, 2020, 152: 113377.
[12]CORTES C, VAPNIK V N. Support-vector networks [J]. Machine Learning, 1995, 20(3): 273-297.

备注/Memo

备注/Memo:
收稿日期:2021-06-01
基金项目:湖南省研究生科研创新项目(CX20200916 ,QL20210216, QL20220211)
第一作者:王昱琛(1998-),女,硕士,主要从事矿山工程爆破的研究。E-mail:1299916821@qq.com
通信作者:杨仕教(1965-),男,教授,博导,主要从事采矿工程、岩土工程研究。E-mail:649292197@qq.com
更新日期/Last Update: 2023-01-07