[1]朱曈钰,彭旭,徐森,等.固体含能材料烤燃过程的数值仿真计算[J].爆破器材,2023,52(04):26-29.[doi:10.3969/j.issn.1001-8352.2023.04.004]
 ZHU Tongyu,PENG Xu,XU Sen,et al.Numerical Simulation Calculation of Cook-off Process of Solid Energetic Materials[J].EXPLOSIVE MATERIALS,2023,52(04):26-29.[doi:10.3969/j.issn.1001-8352.2023.04.004]
点击复制

固体含能材料烤燃过程的数值仿真计算()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
52
期数:
2023年04
页码:
26-29
栏目:
基础理论
出版日期:
2023-07-19

文章信息/Info

Title:
Numerical Simulation Calculation of Cook-off Process of Solid Energetic Materials
文章编号:
5730
作者:
朱曈钰彭旭徐森李斌
南京理工大学化学与化工学院(江苏南京,210094)
Author(s):
ZHU Tongyu PENG Xu XU Sen LI Bin
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
计算流体力学热爆炸仿真模拟烘箱试验
Keywords:
computational fluid dynamics thermal explosion simulation oven test
分类号:
TJ55
DOI:
10.3969/j.issn.1001-8352.2023.04.004
文献标志码:
A
摘要:
烘箱试验有时无法获得物料在烘烤过程中的详细温度分布。基于计算流体力学仿真手段,针对某高氯酸盐与奥克托今(HMX)两种不同固体含能材料的烘箱试验烤燃过程,开展了三维数值仿真研究。通过数值仿真,获得了烘箱试验升温过程中的热传递规律以及物料内部各区域温度的分布与变化情况。结果表明:两种样品在当前体系下发生热爆炸之前,最高温的热点位置都处于样品中轴线偏上位置;高氯酸盐的热爆炸时间为46 551 s,HMX的热爆炸时间为14 703 s。仿真结果与烘箱试验结果基本一致。
Abstract:
In the oven test, it is impossible to obtain the detailed temperature distribution of materials during baking. Therefore, based on computational fluid dynamics simulation method, three-dimensional numerical simulation research was carried out for the baking process of two different solid energetic materials, a perchlorate and HMX. Through numerical simulation, the heat transfer law during the heating process of the oven test and the distribution and variation of temperature in various areas inside the two materials were obtained. The results indicate that, before thermal explosion occurs in the current system, the hottest hot spots of both samples are located above the axis of the samples. The thermal explosion time of the perchlorate is 46 551 s, while that of HMX is 14 703 s. The simulation results are basically consistent with the oven test results.

参考文献/References:

[1]KATSUKI M, CHUNG J D, KIM J W, et al. Development of rapid mixing fuel nozzle for premixed combustion [J]. Journal of Mechanical Science and Technology, 2009, 23(3): 614-623.
[2]MAHMUD T, SANGHA S K. Prediction of a turbulent non-premixed natural gas flame in a semi-industrialscale furnace using a radiative flamelet combustion model [J]. Flow, Turbulence and Combustion, 2010, 84(1): 1-23.
[3]KLIPFEL A, FOUNTI M, ZAEHRINGER K, et al. Numerical simulation and experimental validation of the turbulent combustion and perlite expansion processes in an industrial perlite expansion furnace[J]. Flow, Turbulence and Combustion, 1998, 60(3): 283-300.
[4]ZHUKOV V P. The impact of methane oxidation kinetics on a rocket nozzle flow[J]. Acta Astronautica, 2019, 161: 524-530.
[5]KOWALSKI M, JANKOWSKI A. Numerical modelling of combustion process with the use of ANSYS FLUENT code[J]. Journal of KONES, 2018, 25(4):175-186.
[6]李勇, 刘志友, 安亦然. 介绍计算流体力学通用软件:Fluent[J]. 水动力学研究与进展, 2001, 16(2): 254-258.
LI Y, LIU Z Y, AN Y R. A brief introduction to Fluent:a general purpose CFD code [J]. Journal of Hydrodynamics, 2001,16(2): 254-258.
[7]赵未平, 王亮, 游培寒, 等. 基于 Autodyn 评估破片战斗部对雷达目标的毁伤效应[J]. 弹箭与制导学报, 2019, 39(5): 55-58, 62.
ZHAO W P, WANG L, YOU P H, et al. Destroy evaluation of the fragment warhead to radar target by Autodyn[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39 (5): 55-58, 62.
[8]范一清, 王炅, 谢全民, 等. 聚能装药对引信的冲击试验与仿真研究 [J]. 振动与冲击, 2020, 39(22): 261-267.
FAN Y Q, WANG J, XIE Q M, et al. Experimental and numerical simulation study on the shaped charge jet impact of a fuze [J]. Journal of Vibration and Shock, 2020, 39(22): 261-267.
[9]郝明, 王兴国, 李腾. 基于 FLUENT 的割嘴外部流场火焰燃烧的数值模拟[J]. 电焊机, 2022, 52(1): 109-114.
HAO M, WANG X G, LI T. Numerical simulation of flame combustion at cutting nozzle external flow field based on FLUENT [J]. Electric Welding Machine, 2022, 52(1): 109-144.
[10]胡荣祖, 史启桢. 热分析动力学[M]. 北京:科学出版社, 2008: 1-18.
HU R Z, SHI Q Z. Thermal analysis kinetics [M]. Beijing:Science Press, 2008: 1-18.
[11]王茂. HMX基温压炸药慢速烤燃响应特性研究[D]. 南京: 南京理工大学, 2020.
WANG M. Study on slow cook-off response characteristics of HMX-based thermobaric explosive [D]. Nanjing: Nanjing University of Science and Technology, 2020.

相似文献/References:

[1]冯晓军 王晓峰 田轩 黄亚峰 赵东奎.JO-6炸药耐热性试验研究[J].爆破器材,2012,41(03):1.
 FENG Xiaojun,WANG Xiaofeng,TIAN Xuan,et al.Experimental Study on Heat-resistance Property of JO-6 Explosive[J].EXPLOSIVE MATERIALS,2012,41(04):1.
[2]田轩,冯晓军,封雪松,等.国外高能炸药点火机理研究进展[J].爆破器材,2014,43(01):49.[doi:10.3969/j.issn.1001-8352.2014.01.010]
 TIAN Xuan,FENG Xiaojun,FENG Xuesong,et al.Research Progress on the Mechanism of the Ignition for the High Explosives[J].EXPLOSIVE MATERIALS,2014,43(04):49.[doi:10.3969/j.issn.1001-8352.2014.01.010]
[3]陶俊,王晓峰,陈松,等.一种CL-20基混合炸药等静压装药工艺安全性分析[J].爆破器材,2014,43(03):5.[doi:10.3969/j.issn.1001-8352.2014.03.002]
 TAO Jun,WANG Xiaofeng,CHEN Song,et al.Analysis for Isostatic Pressing Process Safety of a CL20 Based Composite Explosive[J].EXPLOSIVE MATERIALS,2014,43(04):5.[doi:10.3969/j.issn.1001-8352.2014.03.002]
[4]张杰凡①,徐森①③,刘大斌①,等.快/慢烤试验中复合推进剂内部温度场的分布[J].爆破器材,2017,46(03):17.[doi:10.3969/j.issn.1001-8352.2017.03.004]
 ZHANG Jiefan,XU Sen,LIU Dabin,et al.Internal Temperature Field Distribution of the Composite Propellant during Fast/Slow Cook-off Test[J].EXPLOSIVE MATERIALS,2017,46(04):17.[doi:10.3969/j.issn.1001-8352.2017.03.004]
[5]赵懿明,杨振欣,张欣,等.外部空间与初始温度对氢气与空气混合气体爆炸过程的影响[J].爆破器材,2022,51(02):35.[doi:10.3969/j.issn.1001-8352.2022.02.006]
 ZHAO Yiming,YANG Zhenxin,ZHANG Xin,et al.Effects of External Space and Initial Temperature on Explosion Process of Hydrogen-Air Mixture[J].EXPLOSIVE MATERIALS,2022,51(04):35.[doi:10.3969/j.issn.1001-8352.2022.02.006]

备注/Memo

备注/Memo:
收稿日期:2022-06-07
第一作者:朱曈钰(1995-),男,硕士研究生,主要从事爆炸力学的相关研究。E-mail:zhttty999@163.com
通信作者:李斌(1984-),男,博士,副研究员,主要从事多相流和云雾爆轰的研究。 E-mail:libin@njust.edu.cn
更新日期/Last Update: 2023-07-19