[1]滕振超, 赵誉翔, 滕云超, 等.冲击荷载作用下冻土区埋地管道动力响应试验研究[J].地震工程与工程振动, 2021, 41(6): 168-176.
TENG Z C, ZHAO Y X, TENG Y C, et al.Dynamic response test of buried pipeline in frozen soil area under impact load[J].Earthquake Engineering and Engineering Dynamics, 2021, 41(6): 168-176.
[2]白冰洁, 黄子川, 杜国峰.冲击载荷作用下埋地管道的破坏形态研究[J].石油机械,2020, 48(12): 146-152.
BAI B J, HUANG Z C, DU G F. Research on the failure mode of buried pipeline under impact load [J].China Petroleum Machinery, 2020, 48(12): 146-152.
[3]董飞飞, 曾磊, 谢向东, 等.冲击荷载作用下埋地长输管道受力性能分析[J].广西大学学报(自然科学版),2019, 44(3): 776-785.
DONG F F, ZENG L, XIE X D, et al. Analysis of mechanical behavior of buried long distance pipeline under impact loading [J].Journal of Guangxi University (Natural Science Edition), 2019, 44(3): 776-785.
[4]崔毅, 麻宏强.岩石坍塌作用下埋地集输管道应力变化规律[J].兰州理工大学学报, 2021, 47(2): 60-64.
CUI Y, MA H Q. Stress variation law of buried collecting and transporting pipeline under rock collapse [J].Journal of Lanzhou University of Technology, 2021,47(2): 60-64.
[5]GRESNIGT A M, KARAMANOS S A. Response of steel tubes under concentrated lateral loads[J]. Steel Construction, 2014, 7(2): 133-140.
[6]MOSADEGH A, NIKRAZ H. Buried pipe response subjected to traffic load experimental and numerical investigations [J]. International Journal of Geomate, 2017, 13(39):1-8.
[7]MURPHY G. Similitude in engineering [M]. New York: Ronald Press, 1950.
[8]张献民, 付贞贞. 土-结构相互作用下离心机振动台试验相似比设计[J]. 山西建筑, 2021, 47(22): 5-8.
ZHANG X M, FU Z Z. Similarity ratio design of centrifuge shaking table testing considering soil structure interaction [J]. Shanxi Architecture, 2021, 47(22): 5-8.
[9]OSHIRO R E, ALVES M. Scaling of cylindrical shells under axial impact [J]. International Journal of Impact Engineering, 2007, 34(1): 89-103.
[10]王敏,龙源,钟明寿,等.爆破拆除塌落振动对浅埋金属管道动态响应的相似性研究[J].爆破, 2018, 35(3): 147-153,158.
WANG M, LONG Y, ZHONG M S, et al. Similarity study of dynamic response of shallow buried metal pipeline by building vibration in blasting demolition [J].Blasting, 2018, 35(3): 147-153,158.
[11]包杰, 刘昆, WANG G.考虑应变率影响的圆管结构冲击试验缩尺修正方法研究[J].海洋工程, 2016, 34(5): 73-82.
BAO J,LIU K, WANG G.Research on the modified scale method for impact tests of tubular structures considering the effect of strain rate[J].The Ocean Engineering, 2016, 34(5): 73-82.
[12]POLANCO-LORIA M, HOPPERSTAD O S, B-RVIK T, et al. Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model [J]. International Journal of Impact Engineering, 2008, 35 (5): 290-303.
[13 ]任根茂, 吴昊, 方秦,等. 普通混凝土HJC本构模型参数确定[J]. 振动与冲击, 2016, 35(18): 9-16.
REN G M, WU H, FANG Q, et al. Determinations of HJC constitutive model parameters for normal strength concrete [J]. Journal of Vibration and Shock, 2016, 35(18): 9-16.
[14 ]WANG J. Simulation of landmine explosion using LS-DYNA 3D software: benchmark work of simulation of explosion in soil and air: DSTO-TR-1168[R]. Defence Science & Technology Organization, AUS, 2001.
[15]ZHAO J H, FENG H B, TIAN H W, et al. Numerical analysis of explosion in soil [J]. Journal of Architectural Science and Engineering, 2011, 28(1): 96-99.
[16]范俊余, 方秦, 柳锦春. 炸药地面爆炸条件下土中浅埋结构上荷载的作用特点[J]. 解放军理工大学学报(自然科学版), 2008, 9(6): 676-680.
FAN J Y, FANG Q, LIU J C. Characteristics of loads on shallow-buried structures under the ground explosions[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2008, 9(6): 676-680.