[1]赵春柳①,高福磊②,陆婷婷②,等.液体燃料DMAZ的研究进展[J].爆破器材,2022,51(04):1-10,15.[doi:10.3969/j.issn.1001-8352.2022.04.001]
 ZHAO Chunliu,GAO Fulei,LU Tingting,et al.Reasearch Progress of Liquid Fuel 2-Azido-N,N-Dimethylethanamine (DMAZ)[J].EXPLOSIVE MATERIALS,2022,51(04):1-10,15.[doi:10.3969/j.issn.1001-8352.2022.04.001]
点击复制

液体燃料DMAZ的研究进展()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
51
期数:
2022年04
页码:
1-10,15
栏目:
基础理论
出版日期:
2022-07-08

文章信息/Info

Title:
Reasearch Progress of Liquid Fuel 2-Azido-N,N-Dimethylethanamine (DMAZ)
文章编号:
5704
作者:
赵春柳高福磊陆婷婷陈斌安亭刘卫孝丁峰
①国家国防科技工业局军工项目审核中心(北京,100039)
②西安近代化学研究所(陕西西安, 710065)
Author(s):
ZHAO Chunliu GAO Fulei LU Tingting CHEN Bin AN Ting LIU Weixiao DING Feng
① Military Industry Program Evaluation Center of SASTIND (Beijing, 100039)
② Xi’an Modern Chemistry Research Institute (Shaanxi Xi’an, 710065)
关键词:
物理化学NN-二甲基-2-叠氮乙胺(DMAZ)合成性能进展
Keywords:
physical chemistry 2-azido-NN-dimethylethanamine (DMAZ) synthesis performance progress
分类号:
TQ560; V511
DOI:
10.3969/j.issn.1001-8352.2022.04.001
文献标志码:
A
摘要:
N,N-二甲基-2-叠氮乙胺(DMAZ)具有无毒、密度大、生成焓高、燃速高、燃烧产物洁净等优点,是可替代肼类推进剂的新型液体燃料。综述了液体燃料DMAZ的合成、性能及应用研究进展。建议:加快DMAZ配方的应用研究,推动该材料在液体推进剂中的应用;开发DMAZ合成新工艺,解决目前几种工艺存在的收率低、安全风险高、工艺复杂的问题。
Abstract:
2-Azido-N,N-dimethylethanamine(DMAZ) has the advantages of non-toxicity, high density, high enthalpy of formation, high burning rate and clean combustion products. It is a new type of liquid fuel that can replace hydrazine propellants. Synthesis, properties and application of liquid fuel DMAZ were reviewed. Suggestions are put forward. On the one hand, accelerate the application research of DMAZ formula and promote the application of the material in liquid propellant. On the other hand, a new DMAZ synthesis process should be developed to solve the problems of low yield, high safety risk and complex process existing in several current processes.

参考文献/References:

[1]THOMAS A E, CHAMBREAU S D, REDEKER N D, et al. Thermal decomposition and hypergolic reaction of a dicyanoborohydride ionic liquid [J]. The Journal of Physical Chemistry A, 2020, 124 (5): 864-874.
[2]BHOSALE V K, KULKARNI S G, KULKARNI P S. Ionic liquid and biofuel blend: a low-cost and high performance hypergolic fuel for propulsion application [J]. ChemistrySelect, 2016, 1(9): 1921-1925.
[3]LUCAS M, BROTTON S J, SPRENGER J A P, et al. Oxidation of a levitated 1-butyl-3-methylimidazolium dicyanoborate droplet by nitrogen dioxide[J]. The Journal of Physical Chemistry A, 2019, 123 (4):780-795.
[4]李慧,刘俊,庄杰,等. 活性炭-微波-Fenton联用技术处理偏二甲肼废水[J]. 火炸药学报, 2020, 43(1): 96-101.
LI H, LIU J, ZHUANG J, et al. Treatment of unsymmetrical dimethylhydrazine wastewater by using activated carbon-microwave-Fenton technology[J].Chinese Journal of Explosives & Propellants, 2020, 43(1): 96-101.
[5]夏本立,刘渊,王煊军,等. MBR处理偏二甲肼废水效果的影响因素[J]. 火炸药学报, 2011, 34(1): 73-76.
XIA B L, LIU Y, WANG X J, et al. Influencing factors of treating UDMH wastewater by MBR process[J]. Chinese Journal of Explosives & Propellants, 2011, 34(1): 73-76.
[6]张浪浪,刘祥萱,王煊军,等. 氧气与气液两相偏二甲肼作用的氧化产物及其反应机理[J]. 火炸药学报, 2017, 40(5): 88-92.
ZHANG L L, LIU X X, WANG X J, et al. Qxidation products and reaction mechanism of O2 and gas-liquid two phase UDMH [J]. Chinese Journal of Explosives & Propellants, 2017, 40(5): 88-92.
[7]徐泽龙,陈斐,黄凌志,等.气相色谱-质谱法测定偏二甲肼长期贮存的氧化产物[J]. 火炸药学报, 2018, 41(5): 523-530.
XU Z L, CHEN F, HUANG L Z, et al. Determination of oxidation products generated in the long-term storage of unsymmetrical dimethyhydrazine by gas chromatography-mass spectrometry [J]. Chinese Journal of Explosives & Propellants, 2018, 41(5): 523-530.
[8]FAREGHI-ALAMDARI R, GHORBANI-ZAMANI F, ZEKRI N. Synthesis and hypergolic activity evaluation of some new ammonium-imidazolium based ionic liquids [J]. RSC Advances, 2016, 6(31): 26386-26391.
[9]贺芳,方涛,李亚裕,等. 新型绿色液体推进剂研究进展[J]. 火炸药学报, 2006, 29(4): 54-57.
HE F, FANG T, LI Y Y, et al. Development of green liquid propellants [J]. Chinese Journal of Explosives & Propellants, 2006, 29(4): 54-57.
[10]张正斌. 三叠氮胺化合物的性质及研究现状[J]. 化学推进剂与高分子材料, 2011, 9(4): 45-48.
ZHANG Z B. Properties and research situation of triazido amine compounds [J]. Chemical Propellants & Polymeric Materials, 2011, 9(4): 45-48.
[11]LEE L D. Chemical and physical property data dimethyl-2-azidoethylamine: WSTF-IR-0139 [R]. NASA, 2000.
[12]KOKAN T, OLDS J R. An experimental and analytical study of high-energy-density propellants for liquid rocket engines [C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Tucson, AZ, US: AIAA, 2005: AIAA-4471.
[13]SENGUPTA D. High performance, low toxicity hypergolic fuel: US 8685186 B2 [P]. 2014-04-01.
[14]CHEN C C, MCQUAID M J. Mechanisms and kinetics for the thermal decomposition of -2-azido-N,N-dimethy-lethanamine (DMAZ) [J]. The Journal of Physical Chemistry A, 2012, 116(14): 3561-3576.
[15]THOMPSON D M. Amine azides used as monopropellants: US 6299654 B1 [P]. 2001-10-09.
[16]RARATA G, ROKICKA K, SURMACZ P. Hydrogen peroxide as a high energy compound optimal for propulsive applications [J]. Central European Journal of Energetic Materials, 2016, 13(3): 778-790.
[17]COGUILL S L. Synthisis of highly loaded gelled propellants[C]//AIChE Annual Meeting. San Fransico, CA, US, 2003: 10-21.
[18]MELLOR B. A preliminary technical review of DMAZ: a low-toxicity hypergolic fuel[C]//Proceedings of 2nd International Conference on Green Propellants for Space Propulsion. Cagliari, Sardinia, IT, 2004: ESA SP-557.
[19]MCQUAID M J, MCNESBY K L, RICE B M, et al. Density functional theory characterization of the structure and gas-phase, mid-infrared absorption spectrum of 2-azido-N, N-dimethylethanmine (DMAZ) [J]. Journal of Molecular Structure: THEOCHEM, 2002, 587(1/2/3): 199-218.
[20]MCQUAID M J, RICE B M. Computational chemistry-based enthalpy-of-formation, enthalpy-of-vaporization, and enthalpy-of-sublimation predictions for azide-functionalized compounds: ARL-TR-3770[R].Adelphi, MD,US: Army Research Laboratory, 2006.?
[21]MCQUAID M J. Amine azide propellant: US 6962633 B1 [P]. 2005-11-08.
[22]谢慧,王煊军,慕晓刚. 3种典型叠氮胺类化合物的生成焓计算[J]. 化学推进剂与高分子材料, 2017, 15(5): 63-66.
XIE H, WANG X J, MU X G. Calculation for enthalpies of formation of three typical amine azide compounds[J]. Chemical Propellants & Polymeric Materials, 2017, 15(5): 63-66.
[23]SENGUPTA D, RAMAN S. Theoretical investigation of some high-performance novel amine azide propellants[J]. Propellants, Explosives, Pyrotechnics, 2007, 32(4): 338-347.
[24]KOKAN T. Characterizing high-energy-density propellants for space propulsion application [D]. Atlanta, GA, US: Georgia Institute of Technology, 2007.
[25]XIE H, MU X G, ZHANG Y, et al. Theory investigation progress of DMAZ[C]//AIP Conference Procee-dings. Hangzhou, 2017.
[26]REDDY G, SONG J, MECCHI M S, et al. Genotoxicity assessment of two hypergolic energetic propellant compounds [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2010, 700(1/2): 26-31.
[27]PAKDEHI S G, REZAEI S, MOTAMEDOSHARIATI H, et al. Sensitivity of dimethyl amino ethyl azide (DMAZ) as a noncarcinogenic and high performance fuel to some external stimuli [J]. Journal of Loss Prevention in the Process Industries, 2014, 29: 277-282.
[28]HUANG J, WANG X J, LI Y, et al. A green highenergy liquid fuel: DMAZ [C]//International Conference on Manufacturing Construction and Energy Engineering. Hong Kong, 2016.
[29]PAKDEHI S G, NIKNAM M. Shelf life prediction of a novel liquid fuel, 2-dimethylaminoethyl azide (DMAZ) [J]. Central European Journal of Energetic Materials, 2017,14(3): 675-687.
[30]HALLIT R E A. Hypergolic azide fuels with hydrogen peroxide: US 6949152 B2 [P]. 2005-09-27.
[31]常伟林,池俊杰,刘建艇,等. DMAZ合成研究[J]. 化学推进剂与高分子材料, 2016, 14(4): 84-86.
CHANG W L, CHI J J, LIU J T, et al. Synthesis research of DMAZ [J]. Chemical Propellants & Polymeric Materials, 2016, 14(4): 84-86.
[32]王建伟,常伟林,池俊杰,等. 叠氮胺类燃料合成研究进展[J]. 化学推进剂与高分子材料, 2011, 9(3):1-4.
WANG J W, CHANG W L, CHI J J, et al. Research progress on synthesis of azido-amine fuels[J]. Chemical Propellants & Polymeric Materials, 2011, 9(3): 1-4.
[33]SCHIEMENZ P, ENGELHARD H. Trimethoxyphenyl derivatives. I. Synthesis of amines via mixed anhydrides[J]. Chemische Berichte, 1959, 92: 857-862.
[34]BENALIL A, CARBONI B, VAULTIER M. Synthesis of 1,2-aminoazides. Conversion to unsymmetrical vicinal diamines by catalytic hydrogenation or reductive alkylation with dichloroboranes.[J]. Tetrahedron, 1991, 47(38): 8177-8194.
[35]池俊杰,王建伟,王文浩,等. N,N-二甲基叠氮乙基胺合成研究[J]. 化学推进剂与高分子材料, 2010, 8(4): 39-41.
CHI J J, WANG J W, WANG W H, et al. Study on synthesis of 2-azido-N,N-dimethylethanamine [J]. Chemical Propellants & Polymeric Materials, 2010, 8(4): 39-41.
[36]孙甜甜,厉刚. 水介质中N,N-二甲基-2-叠氮乙胺盐酸盐的合成反应动力学[J]. 含能材料, 2013, 21(1): 49-52.
SUN T T, LI G. Reaction kinetics of synthesizing 2-azido-N,N?dimethylethyl amine hydrochloride in aqueous solution[J]. Chinese Journal of Energetic Materials, 2013, 21(1): 49-52.
[37]孙聪明,孙甜甜,凌明明,等. 水介质中DMAZ的合成[C]中国化学会. 中国化学会第五届全国化学推进剂学术会议论文集. 大连, 2011: 114-118.
[38]孙甜甜. 叠氮含能燃料的合成及物性研究[D]. 杭州:浙江大学, 2013.
SUN T T.Synthesis and properties of azidocontaining energetic fuels [D].Hangzhou: Zhejiang University, 2013.
[39]ARONSON J.The synthesis and characterization of energetic materials from sodium azide [D].Atlanta,GA,US:Georgia Institute of Technology, 2004:139-144.
[40]PAKDEHI S G, BABAEE S, AZIZI H R. Kinetic study and optimization of dehydration of dimethyl amino ethyl azide (DMAZ) using response surface methodology[J]. Bulletin of the Chemical Society of Japan, 2017, 90(12): 1325-1332.
[41]RAHIMI E, PAKDEHI S G, SHAFIEI K. Effect of the Co-SiO2 mesoporous layer coating step on the performance of liquid fuel dimethyl amino ethyl azide dehydration[J]. Chemical Engineering Technology, 2019, 42(5): 996-1001.
[42]SHAHRAM G P, HOSSEIN R. Sub-atmospheric distillation for water (1) + dimethyl amino ethyl azide (2) mixture[J]. Iranian Journal of Chemistry and Chemical Engineering, 2016, 35(2): 107-111.
[43]GHANBARI S, VAFERI B. Experimental and theoretical investigation of water removal from DMAZ liquid fuel by an adsorption process[J]. Acta Astronautica, 2015, 112:19-28.
[44]AZIZI H R, PAKDEHI S G, BABAEE S. Thermodynamic study and optimization a nano-zeolite for dehydration liquid fuel (DMAZ) using taguchi L16 orthogonal array [J]. Arabian Journal for Science and Engineering, 2018, 43: 2465-2472.
[45]NOORPOOR Z, PAKDEHI S G, RASHIDI A. High capacity and energy-efficient dehydration of liquid fuel 2-dimethyl amino ethyl azide (DMAZ) over chromium terephthalic (MIL-101) nanoadsorbent[J]. Adsorption, 2017, 23: 743-752.
[46]PAKDEHI S G, REZAEI F. Adsorption of liquid fuel dimethyl amino ethyl azide from dilute aqueous solution on activated carbon prepared from walnut shell [J]. Desalination and Water Treatment, 2016, 57(57): 27726-27740.
[47]PAKDEHI S G, VAFERI B. A study on adsorptive removal of DMAZ from aqueous solutions by ZSM5, NaY zeolites, and activated carbon: kinetic and isotherm [J]. Desalination and Water Treatment, 2016, 57 (39): 18286-18292.
[48]FOURCADE F, YAHIAT S, ELANDALOUSSI K, et al. Relevance of photocatalysis prior to biological treatment of organic pollutants: selection criteria[J]. Chemical Engineering and Technology, 2012, 35(2): 238-246.
[49]SHAH A D, DAI N, MITCH W A. Application of ultraviolet, ozone, and advanced oxidation treatments to washwaters to destroy nitrosamines, nitramines, amines, and aldehydes formed during amine-based carbon capture[J]. Environmental Science and Technology, 2013, 47(6): 2799-2808.
[50]MATA A M T, LIGNEUL A, LOUREN-O ND, et al. Advanced oxidation for aromatic amine mineralization afer aerobic granular sludge treatment of an azo dye containing wastewater [J]. Desalination and Water Treatment, 2017, 91(2): 168-174.
[51]PAKDEHI S G, SHAVEISI Y. Photocatalytic degradation of dimethyl aminoethyl azide in water via TiO2/light expanded clay aggregate catalyst [J]. Chemical Engineering and Technology, 2019, 42(12): 2631-2640.
[52]PAKDEHI S G, FARSHADPOUR V. Kinetic study on catalytic combustion of DMAZ over Ir/γ-Al2O3 [J]. Combustion Science and Technology, 2012, 184(19): 1318-1329.
[53]SAKSENA P, TADIGADAPA S, YETTER R A. Design, fabrication and analysis of stagnation flow microreactors used to study hypergolic reactions [J]. Lab on a Chip, 2015, 15(10): 2248-2257.
[54]PAKDEHI S G, AJDARI S, HASHEMI A, et al. Performance evaluation of liquid fuel 2-dimethyl amino ethyl azide (DMAZ) with liquid oxidizers [J]. Journal of Energetic Materials, 2015, 33(1): 17-23.
[55]程永喜, 方涛, 贺芳, 等. DMAZ推进剂的研究进展[C]中国化学会. 中国化学会第三届全国化学推进剂学术会议论文集. 北京, 2007: 59-64.
[56]SENGUPTA D, RAMAN S. Theoretical investigation of some highperformance novel amine azide propellants [J]. Propellants, Explosives, Pyrotechnics, 2007, 32(4): 338-347.
[57]许可睿. DMAZ/NTO液体火箭发动机推力室方案设计及燃烧过程仿真研究[D]. 长沙:国防科学技术大学, 2014.
XU K R. Design and combustion simulation of liquid rocket thrust chamber with bipropellant of DMAZ/NTO[D]. Changsha: National University of Defense Technology, 2014.
[58]KOKAN T S, OLDS J R, SEITZMAN J M, et al. Characterizing high-energy-density propellants for space propulsion applications [J]. Acta Astronautica, 2009, 65(7/8): 967-986.
[59]KOKAN T S, OLDS J R, SEITZMAN J M, et al. Characterizing high-energy-density propellants for space propulsion applications[J]. Journal of Thermophysics and Heat Transfer, 2008, 22(4): 727-732.
[60]MEYERS C J, KOSOWSKI B M. Dimethylamino ethylazide: a replacement of hydrazine derivatives in hypergolic fuel applications[C]//34th International Annual Conference of ICT. Karlsruhe, DE, 2003.
[61]THOMPSON D M. Tertiary amine azides in hypergolic liquid or gel fuels propellant system: 6013143 [P]. 2000-01-11.
[62]CHEN C C, MCQUAID M. A thermochemical kinetic-based study of ignition delays for 2-azidoethanamine-red fuming nitric acid systems: 2-azido-N-methylethanamine (MMAZ) vs. 2-azido-N,N-dimethylethanamine (DMA-Z): ARL-TR-6787 [R].US: Army Research Laboratory, 2014.
[63]ZHANG F, ZHANG L D, LAW C K. Density functional theory study of the reactions of 2-azido-N,N-dimethylethanamine with nitric acid and nitrogen dioxide [J]. Combustion and Flame, 2015, 162(1): 237-248.
[64]THOMPSON D M. Tertiary amine azides in liquid or gel fuels in gas generator systems: US 6210504 B1[P]. 2001-04-03.
[65]DOBBINS T A, WILEY D B. Hypergolic hydrocarbon fuels: US 8894782 B2[P]. 2014-11-25.
[66]池俊杰,李晓峰,郑永金,等. 叠氮胺燃料点火催化剂的研究进展[J]. 化学推进剂与高分子材料, 2014, 12(2): 50-53.
CHI J J,LI X F,ZHENG Y J,et al. Research progress of ignition catalyst for azidoamine fuel [J].Chemical Propellants & Polymeric Materials,2014,12(2): 50-53.
[67]池俊杰, 常伟林,夏宇,等. 缩短叠氮胺燃料作为双组元推进剂点火延迟的研究进展[J].化学推进剂与高分子材料, 2012, 10(1): 44-47, 78.
CHI J J, CHANG W L, XIA Y, et al. Research progress in shortening ignition delay of azido-amine fuels used for bipropellants[J]. Chemical Propellants & Polymeric Materials, 2012, 10(1): 44-47, 78.
[68]潘欣欣,黄雪峰,李盛姬,等. 十二氢十二硼酸双四乙基铵的点火与燃烧特性[J]. 火炸药学报, 2019, 42(6): 614-620.
PAN X X, HUANG X F, LI S J, et al. Ignition and combustion characteristics of tetraethyl ammonium dodecahydrododecaborates[J]. Chinese Journal of Explosives & Propellants, 2019, 42(6): 614-620.
[69]STEVENSON W H Ⅲ,FELTON L D,SLOCUMWANG Z. Hypergolic liquid or gel fuel mixtures: US 8435364 B2 [P]. 2013-05-07.
[70]PAKDEHI S G, SHIRZADI B. Specific impulse and ignition delay time assessment for DMAZ with liquid oxidizers for an upper stage rocket engine [J]. Iranian Journal of Chemistry and Chemical Engineering, 2017, 36 (6):171-176.
[71]WANG S Q, THYNELL S T. Experimental investigation of pressure effect on ignition delay of monomethylhydrazine, 1,1-dimethylhydrazine, tetramethylethylenediamine and 2-dimethylaminoethylazide with nitric acid [C]//8th U.S. National Combustion Meeting.Park City, UT,US, 2013.
[72]HOLLINGSHEAD J M, LITZINGER M, KIAOULIAS D, et al. Combustion of a TMEDA/WFNA hypergolic in a bipropellant rocket engine: AIAA 20194155 [R]. Indianapolis, IN, US: AIAA, 2019.
[73]PAKDEHI S G, SHIRZADI B. Effect of some inorganic nitrate salts on the ignition delay time of DMAZ-IRFNA and DMAZ-WFNA bi-propellants [J]. Central European Journal of Energetic Materials, 2018, 15(1): 162-174.
[74]PAKDEHI S G, SHIRZADI B. The effect of some amines on ignition delay time of dimethyl amino ethyl azide (DMAZ) and white fuming nitric acid (WFNA) [J]. Propellants, Explosives, Pyrotechnics, 2017, 43(2): 162-169.

相似文献/References:

[1]黄亚峰,王晓峰,王红星,等.火炸药双螺杆挤出工艺的研究现状与发展[J].爆破器材,2013,42(04):41.[doi:10.3969/j.issn.1001-8352.2013.04.010]
 HUANG Yafeng,WANG Xiaofeng,WANG Hongxing,et al.Research Status and Development of the Twin Screw Extrusion Technology on the propellants and explosives[J].EXPLOSIVE MATERIALS,2013,42(04):41.[doi:10.3969/j.issn.1001-8352.2013.04.010]
[2]郑亚峰,南海,席鹏,等.不同比例Al-RDX混合炸药的热分解活化能研究[J].爆破器材,2015,44(05):13.[doi:10.3969/j.issn.1001-8352.2015.05.004]
 ZHENG Yafeng,NAN Hai,XI Peng,et al.Research of Thermal Decomposition Activation Energy on Al-RDX Hybrid Explosives with Different Components Ratio[J].EXPLOSIVE MATERIALS,2015,44(04):13.[doi:10.3969/j.issn.1001-8352.2015.05.004]
[3]张涵,韩体飞,吴红波,等.铅丹-硼系延期药的储存稳定性研究[J].爆破器材,2017,46(01):49.[doi:10.3969/j.issn.1001-8352.2017.01.011]
 ZHANG Han,HAN Tifei,WU Hongbo,et al.Storage Stability of Pb3O4-B Type Delay Composition[J].EXPLOSIVE MATERIALS,2017,46(04):49.[doi:10.3969/j.issn.1001-8352.2017.01.011]
[4]王树涛①,霸书红①,程秀莲①,等.微热量热计法研究几种盐对硝酸铵晶变的影响[J].爆破器材,2017,46(05):48.[doi:10.3969/j.issn.1001-8352.2017.05.010]
 WANG Shutao,BA Shuhong,CHENG Xiulian,et al.Effect of Four Inorganic Salts on Crystal Phase Transition of Ammonium Nitrate Detected by Micro Calorimeter[J].EXPLOSIVE MATERIALS,2017,46(04):48.[doi:10.3969/j.issn.1001-8352.2017.05.010]
[5]张路遥①②,刘卉①,郑文芳①,等.CL-20二氟氨基衍生物结构与性能的DFT研究[J].爆破器材,2018,47(03):7.[doi:10.3969/j.issn.1001-8352.2018.03.002]
 ZHANG Luyao,LIU Hui,ZHENG Wenfang,et al.DFT Study on the Structure and Properties of Difluoramino Derivatives of CL-20[J].EXPLOSIVE MATERIALS,2018,47(04):7.[doi:10.3969/j.issn.1001-8352.2018.03.002]
[6]高福磊,汪营磊,陆婷婷,等.三硝基乙醇及其脂肪族衍生物研究进展[J].爆破器材,2019,48(01):1.[doi:10.3969/j.issn.1001-8352.2019.01.001]
 GAO Fulei,WANG Yinglei,LU Tingting,et al.Research Progress of 2,2,2-Trinitroethanol and Its Aliphatic Derivatives[J].EXPLOSIVE MATERIALS,2019,48(04):1.[doi:10.3969/j.issn.1001-8352.2019.01.001]
[7]杨建兴,许灿啟,杨伟涛.叠氮硝胺发射药与赛璐珞药盒长储稳定性研究[J].爆破器材,2019,48(02):32.[doi:10.3969/j.issn.1001-8352.2019.02.006]
 YANG Jianxing,XU Canqi,YANG Weitao.Study on Storage Stability of Azidonitramine Propellants with Celluloid Charge Case[J].EXPLOSIVE MATERIALS,2019,48(04):32.[doi:10.3969/j.issn.1001-8352.2019.02.006]
[8]王芳芳,王琼,于思龙,等.利用分离式Hopkinson压杆技术研究浇注PBX炸药的老化性能[J].爆破器材,2019,48(03):23.[doi:10.3969/j.issn.1001-8352.2019.03.005]
 WANG Fangfang,WANG Qiong,YU Silong,et al.Application of Split Hopkinson Pressure Bar Technique in Aging Properties Study on Casting Polymer Bonded Explosives[J].EXPLOSIVE MATERIALS,2019,48(04):23.[doi:10.3969/j.issn.1001-8352.2019.03.005]
[9]李祥志①,吴敏杰①,陆洪林①,等.二硝基乙腈钾与火药组分相容性的DSC法评估[J].爆破器材,2021,50(03):1.[doi:10.3969/j.issn.1001-8352.2021.03.001]
 LI Xiangzhi,WU Minjie,LU Honglin,et al.Compatibility of Potassium Dinitroacetonitrile with Propellant Components Evaluated by DSC Method[J].EXPLOSIVE MATERIALS,2021,50(04):1.[doi:10.3969/j.issn.1001-8352.2021.03.001]
[10]高杰,金大勇,郭昕,等.含能增塑剂Bu-NENA与黏结剂共混体系的介观动力学模拟[J].爆破器材,2021,50(06):8.[doi:10.3969/j.issn.1001-8352.2021.06.002]
 GAO Jie,JIN Dayong,GUO Xin,et al.Mesoscopic Dynamics Simulation of Blends of Energetic Plasticizer Bu-NENA and Binder[J].EXPLOSIVE MATERIALS,2021,50(04):8.[doi:10.3969/j.issn.1001-8352.2021.06.002]

备注/Memo

备注/Memo:
收稿日期:2022-02-23
基金项目:国家自然科学基金(22005238);陕西省重点研发计划一般项目(2021SF-115)
第一作者:赵春柳(1978-),男,高工,主要从事军工科研项目评估及研究。E-mail:125373606@qq.com
更新日期/Last Update: 2022-07-05