[1]罗西,刘红妮,周文静,等.重结晶对PYX热性能和机械感度的影响[J].爆破器材,2022,51(03):38-42.[doi:10.3969/j.issn.1001-8352.2022.03.007]
 LUO Xi,LIU Hongni,ZHOU Wenjing,et al.Influence of Recrystallization on Thermal Properties and Mechanical Sensitivity of PYX[J].EXPLOSIVE MATERIALS,2022,51(03):38-42.[doi:10.3969/j.issn.1001-8352.2022.03.007]
点击复制

重结晶对PYX热性能和机械感度的影响()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
51
期数:
2022年03
页码:
38-42
栏目:
爆炸材料
出版日期:
2022-06-06

文章信息/Info

Title:
Influence of Recrystallization on Thermal Properties and Mechanical Sensitivity of PYX
文章编号:
5689
作者:
罗西刘红妮周文静栾洁玉赵娟常海
西安近代化学研究所(陕西西安,710065)
Author(s):
LUO Xi LIU Hongni ZHOU Wenjing LUAN Jieyu ZHAO Juan CHANG Hai
Xi’an Modern Chemistry Research Institute (Shaanxi Xi’an, 710065)
关键词:
PYX晶体形貌粒径纯度热性能机械感度
Keywords:
PYX crystal morphology particle size purity thermal performance mechanical sensitivity
分类号:
TJ55;O64
DOI:
10.3969/j.issn.1001-8352.2022.03.007
文献标志码:
A
摘要:
分别采用降温法和溶剂-反溶剂法对2,6-二苦氨基-3,5-二硝基吡啶(PYX)进行了重结晶研究。表征了不同重结晶方法所得PYX晶体的形貌和粒径,测定了重结晶前、后的晶体纯度,研究了重结晶对晶体热性能和机械感度的影响。结果表明:采用降温法在DMSO中得到的多为小颗粒团聚形成的不规则块状PYX晶体;采用溶剂-反溶剂法在DMF或DMSO中得到的多为片状PYX晶体,在DMSO/DMF混合溶剂中得到的多为规则的多边形块状PYX晶体。相比较而言,多边形块状PYX晶体的表面光滑度良好,粒径跨度最小,纯度最高,热稳定性较优,且兼具最低的撞击感度和摩擦感度,其热分解峰温和热爆炸临界温度较重结晶前分别提高了8.99 ℃和9.11 ℃,撞击感度和摩擦感度较重结晶前分别降低了16%和12%。
Abstract:
2,6-bis(picrylamino)-3,5-dinitropyridine (PYX) was recrystallized by cooling method and solventantisolvent method, and morphology and particle size of the crystal obtained by different recrystallization methods were characterized. Crystal purity before and after recrystallization was tested. Effects of recrystallization on thermal property and mechanical sensitivity of the crystal were researched. The results show that the irregular block PYX crystals formed by the agglomeration of small particles were obtained by cooling method in DMSO. The flaky PYX crystals were obtained by solvent-antisolvent method in DMF and DMSO, and the regular polygonal block PYX crystals were obtained in the DMSO/DMF mixed solvent. In comparison, the polygonal block PYX crystals obtained by recrystallization have good surface smoothness, the smallest particle size span, the highest purity, better thermal stability, and the lowest impact sensitivity and friction sensitivity. Compared with those before recrystallization, its thermal decomposition peak temperature and thermal explosion critical temperature increase by 8.99 ℃ and 9.11 ℃, and impact sensitivity and friction sensitivity decrease by 16% and 12%, respectively.

参考文献/References:

[1]任务正,王泽山.火炸药理论与实践[M].北京:中国北方化学工业总公司出版社,2001.
REN W Z, WANG Z S. Theory and practice of propellant and explosive[M]. Beijing: China North Chemical Industry Corporation Press, 2001.
[2]黄亚峰,王晓峰,冯晓军,等.高温耐热炸药的研究现状与发展[J].爆破器材,2012,41(6):1-4.
HUANG Y F, WANG X F, FENG X J, et al. Preset research and perspective of the hightemperature heatresistantce explosives[J]. Explosive Materials, 2012, 41(6): 1-4.
[3]尉志化,王建龙,刁莹,等.单质耐热炸药的研究概况[J].化工中间体,2011,8(5):14-16.
WEI Z H, WANG J L, DIAO Y, et al. Elementary heat-resistant explosives research situation [J]. Chemical Intermediate, 2011,8(5): 14-16.
[4]BADGUJAR D M, TALAWAR M B, ASTHANA S N, et al. Advances in science and technology of modern energetic materials: an overview[J]. Journal of Hazardous Materials, 2008,151(2/3): 289-305.
[5]AGRAWAL J P. Past, present & future of thermally stable explosives[J]. Central European Journal of Energetic Materials, 2012, 9(3): 273-290.
[6]COUBUM M D. 2,6-bis(picrylamino)-3,5-dinitropyridine and a method for its preparation: US 3678061[P]. 1972-07-18.
[7]HUDSON F M. Method of preparing 2,6-bis(picrylamino)-3,5-dinitropyridine: EP 0104717[P]. 1984-04-04.
[8]KUBOSZEK R, PAWLOWSKI W. Synthesis of 2,6- bis(picrylamino)-3,5-dinitropyridine: PL 186580 [P]. 1997.
[9]KLAPOTKE T M, STIERSTORFER J, WEYRAUTHER M, et al. Synthesis and investigation of 2,6-bis(picrylamino)-3,5- dinitropyridine(PYX) and its salts[J]. Chemistry—A Europeon Journal, 2016,22(25): 8619-8626.
[10]王军,黄靖伦,廖龙渝,等.一种PYX制备新技术[J].含能材料,2008,16(4):480.
WANG J, HUANG J L, LIAO L Y, et al. A new preparation technology of PYX[J]. Chinese Journal of Energetic Materials, 2008, 16(4): 480.
[11]邓明哲,张川,叶志虎,等.耐热炸药PYX制备工艺改进[J].应用化工,2013,42(5):904-906,935.
DENG M Z, ZHANG C, YE Z H, et al. Improvement of the preparation process of the heat-resistant explosive PYX [J]. Applied Chemical Industry, 2013, 42(5): 904-906,935.
[12]王保国,陈亚芳,张景林.溶剂-非溶剂法制备超细PYX的影响因素[J].兵工学报,2008,29(9): 1034-1038.
WANG B G, CHEN Y F, ZHANG J L. Influencing factors of preparing ultrafine PYX by solvent and non-solvent technique[J]. Acta Armamentarii, 2008, 29(9): 1034-1038.
[13]刘兰,王平,曾贵玉,等.超细PYX的制备及表征[J].火工品,2009(2):17-19.
LIU L, WANG P, ZENG G Y, et al. Preparation and characterization of ultrafine PYX[J]. Initiators & Pyrotechnics, 2009(2): 17-19.
[14]胡荣祖,宁斌科,俞庆森,等.用非等温分析法估算含能材料的热爆炸临界温度[J].含能材料,2003,11(1):18-23.
HU R Z, NING B K, YU Q S, et al. Estimating the critical temperature of thermal explosion for energetic materials using nonisothermal analysis method[J]. Energetic- Materials, 2003, 11(1): 18-23.

备注/Memo

备注/Memo:
收稿日期:2021-12-30
第一作者:罗西(1992-),男,博士研究生,主要从事火炸药理化分析研究。E-mail:luoxi12345678@163.com
通信作者:常海(1962-),男,博士,研究员,主要从事火炸药理化分析研究。E-mail:13809154895@126.com
更新日期/Last Update: 2022-06-07