[1]CHELOUCHE S, TRACHE D, MAAMACHE I, et al. A new experimental way for the monitoring of the real/equivalent in service time of double base rocket propellant by coupling VST and PCA[J]. Defence Technology, 2021, 17(2): 440-449.
[2]衡淑云, 韩芳, 张林军, 等. 硝酸酯火药安全储存寿命的预估方法和结果[J]. 火炸药学报, 2006, 29(4): 71-76.
HENG S Y, HAN F, ZHANG L J, et al. Estimation method and results of safe storage life for nitrate ester propellants[J]. Chinese Journal of Explosives and Propellants, 2006, 29(4): 71-76.
[3]TRACHE D, TARCHOUN A F. Analytical methods for stability assessment of nitrate esters-based propellants[J]. Critical Reviews in Analytical Chemistry, 2019, 49(5): 415-438.
[4]TRACHE D, TARCHOUN A F. Stabilizers for nitrate ester-based energetic materials and their mechanism of action: a state-of-the-art review[J]. Journal of Materials Science, 2018 (53): 100-123.
[5]THOMAS J C, SAMMET T E, DILLIER C A M, et al. Aging effects on the burning rates of composite solid propellants with nano-additives[J]. Journal of Propulsion and Power, 2019, 35(2): 342-351.
[6]TRACHE D, KHIMECHE K. Study on the influence of ageing on chemical and mechanical properties of N,N′-dimethyl-N,N′-diphenylcarbamide stabilized propellants[J]. Journal of Thermal Analysis and Calorimetry, 2013,111: 305-312.
[7]张丽, 侯少锋, 周竑, 等. 复合固体推进剂老化特征研究进展[J]. 化学推进剂与高分子材料, 2016, 14(2): 1-6.
ZHANG L, HOU S F, ZHOU H, et al. Research progress in aging characteristics of composite solid propellants[J]. Chemical Propellants & Polymeric Materials, 2016, 14(2): 1-6.
[8]KUMAR A, SADAVARTE V S, PANDE S M, et al. Studies on the effect of ageing on thermal, ballistic and mechanical properties of advanced energetic propellants[J]. Propellants, Explosives, Pyrotechnics, 2021, 46(4): 626-635.
[9]唐秋凡, 樊学忠, 李吉祯, 等. 双基系固体推进剂热安定性及安定机理研究进展[J]. 火炸药学报, 2015, 38(4): 5-12.
TANG Q F, FAN X Z, LI J Z, et al. Progress in thermal stability and stability mechanism of doublebase solid propellants[J]. Chinese Journal of Explosives and Propellants, 2015, 38(4): 5-12.
[10]衡淑云, 韩芳, 周继华, 等. 高能发射药有效安定剂消耗反应动力学研究[J]. 含能材料, 2008, 16(5): 494-497.
HENG S Y, HAN F, ZHOU J H, et al. The kinetics of the effective stabilizer consumption reaction in high energy gun propellants[J]. Chinese Journal of Energetic Materials, 2008, 16(5): 494-497.
[11]姜志保, 郑波, 王韶光. 发射药化学安定性检测方法研究[J]. 测试技术学报, 2019, 33(4): 361-364.
JIANG Z B, ZHENG B, WANG S G. Research of testing methods on propellant chemical stability[J]. Journal of Test and Measurement Technology, 2019, 33(4): 361-364.
[12]ALAMU E O, NUWAMANYA E, CORNET D, et al. Near-infrared spectroscopy applications for highthroughput phenotyping for cassava and yam: a review[J]. International Journal of Food Science & Technology, 2021, 56(3): 1491-1501.
[13]DALE L M, THEWIS A, BOUDRY C, et al. Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review[J]. Applied Spectroscopy Reviews, 2013, 48(2): 142-159.
[14]YANG R J, LIU C Y, YANG Y R, et al. Two-trace two-dimensional (2T2D) correlation spectroscopy application in food safety:a review[J]. Journal of Molecular Structure, 2020, 1214: 128219.
[15]李芳, 蔺向阳, 陈陈, 等. 近红外光谱法在线检测复合固体推进剂的组分含量[J]. 火工品, 2019 (6): 35-38.
LI F, LIN X Y, CHEN C, et al. The composition content of composite solid propellant real-time detection by NIR spectra[J]. Initiators & Pyrotechnics, 2019 (6): 35-38.
[16]ZHANG G F, WANG Y Y, WANG W B, et al. Rapid online determination of feed concentration in nitroguanidine spray drying process by near infrared spectroscopy[J]. Infrared Physics & Technology, 2020, 109: 103432.
[17]WANG W B, ZHANG G F, XIE L, et al. Fast assay of ethyl acetate content of doublebase oblate spherical propellant after balling process by near-infrared spectroscope[J]. Infrared Physics & Technology, 2021, 112: 103579.
[18]BASSI D, MENEGOTTI L, OSS S, et al. The 3←0 C H stretch overtone of benzene[J]. Chemical Physics Letters, 1993, 207(2/3): 167-172.
[19]TOSI C, PINTO A. Near-infrared spectroscopy of hydrocarbon functional groups[J]. Spectrochimica Acta Part A: Molecular Spectroscopy, 1972, 28(3): 585-597.
[20]IWAMOTO R, NARA A, MATSUDA T. Near-infrared combination and overtone bands of CH in CHX3, CHX2-CHX2, and CHX2-CX2-CHX2[J]. Applied Spectroscopy, 2005, 59(11): 1393-1398.
[21]李尚科, 李跑, 杜国荣, 等. 基于近红外光谱技术和优化预处理方法的不同品牌燕麦无损鉴别分析[J]. 食品安全质量检测学报, 2019, 24(10): 8204-8210.
LI S K, LI P, DU G R, et al. Non-destructive identification of different brands of oats based on nearinfrared spectroscopy and optimized pretreatment methods[J]. Journal of Food Safety and Quality, 2019, 24(10): 8204-8210.
[22]方向, 金秀, 朱娟娟, 等. 基于可见-近红外光谱预处理建模的土壤速效氮含量预测[J]. 浙江农业学报, 2019, 31(9): 1523-1530.
FANG X, JIN X, ZHU J J, et al. Prediction of soil available nitrogen content based on visible and near infrared spectroscopy preprocess and modeling[J]. Acta Agriculturae Zhejiangensis, 2019, 31(9): 1523-1530.
[23]褚小立. 化学计量学方法与分子光谱分析技术[M]. 北京:化学工业出版社, 2011.
CHU X L. Molecular spectroscopy analytical technology combined with chemometrics and its applications[M]. Beijing: Chemical Industry Press, 2011.
[24]ZOU Q, DENG G D, GUO X D, et al. A green analytical tool for in-process determination of RDX content of propellant using the NIR system[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(12): 1506-1510.
[25]NAKAJIMA S, GENKAWA T, MIYAMOTO A, et al. Useful tissues in cabbage head for freshness evaluation with visible and near infrared spectroscopy[J]. Food Chemistry, 2021, 339: 128058.
[26]MINAS I S, BLANCO-CIPOLLONE F, STERLE D. Accurate non-destructive prediction of peach fruit internal quality and physiological maturity with a single scan using near infrared spectroscopy[J]. Food Chemistry, 2021, 335: 127626.