[1]赵懿明,杨振欣,张欣,等.外部空间与初始温度对氢气与空气混合气体爆炸过程的影响[J].爆破器材,2022,51(02):35-41.[doi:10.3969/j.issn.1001-8352.2022.02.006]
 ZHAO Yiming,YANG Zhenxin,ZHANG Xin,et al.Effects of External Space and Initial Temperature on Explosion Process of Hydrogen-Air Mixture[J].EXPLOSIVE MATERIALS,2022,51(02):35-41.[doi:10.3969/j.issn.1001-8352.2022.02.006]
点击复制

外部空间与初始温度对氢气与空气混合气体爆炸过程的影响()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
51
期数:
2022年02
页码:
35-41
栏目:
爆炸材料
出版日期:
2022-04-06

文章信息/Info

Title:
Effects of External Space and Initial Temperature on Explosion Process of Hydrogen-Air Mixture
文章编号:
5653
作者:
赵懿明杨振欣张欣张传彪许张归周庄红张云赵亮亮曹卫国
中北大学环境与安全工程学院(山西太原,030051)
Author(s):
ZHAO Yiming YANG Zhenxin ZHANG Xin ZHANG Chuanbiao XU Zhanggui ZHOU Zhuanghong ZHANG Yun ZHAO Liangliang CAO Weiguo
School of Environment and Safety Engineering, North University of China (Shanxi Taiyuan, 030051)
关键词:
容器形状爆炸压力火焰温度计算流体力学
Keywords:
container shape explosion pressure flame temperature computational fluid dynamics
分类号:
X932
DOI:
10.3969/j.issn.1001-8352.2022.02.006
文献标志码:
A
摘要:
为了研究容器形状和初始温度对氢气与空气预混气体爆炸过程的影响,分别采用20 L球形容器和20 L圆柱形容器对氢气与空气混合气体的爆炸过程进行了研究。首先,通过壁面压力传感器获取了两种容器内的最大爆炸压力,并采用高速摄影装置拍摄了球形容器内部爆炸火球的发展变化过程。其次,利用计算流体力学方法对氢气爆炸过程进行了数值模拟,获取了三维爆炸压力场、火焰温度场等爆炸参数,对比分析了容器内不同位置处的压力曲线,并探讨了初始温度对氢气爆炸压力的影响。实验结果表明:在常温下,最大爆炸压力出现在氢气体积分数为30.0%的条件下,略高于理论当量浓度。数值模拟结果表明:两种容器内,火焰传播初期均呈球面往外发展;容器内上壁面的压力均低于右壁面的压力;由于壁面不规则的反射作用,圆柱形容器第1个压力峰值后的压力振荡周期不同步;在体系初始压力不变的情况下,初始温度提高20%,容器内部总的物质的量减少,最大爆炸压力下降15%。
Abstract:
To study the effect of container shape and initial temperature on explosion process of premixed hydrogen-air, explosion process of premixed hydrogen-air was studied using a 20 L spherical container and a 20 L cylindrical container, respectively. Firstly, the maximum explosion pressures in the two containers were obtained through the wall pressure sensor, and evolution of the explosion fireball inside the spherical container was captured with a high-speed camera. Secondly, the explosion process was conducted by computational fluid dynamics simulation. Parameters such as 3D explosion pressure field and temperature field were obtained. Pressure at different locations in the container was compared and analyzed, and influence of initial temperature on explosion pressure was discussed. Test results reflect that, at room temperature, the maximum explosion pressure appears when the volume fraction of hydrogen is 30.0%, which was slightly higher than the theoretical equivalent concentration. Simulation results of show that the flame develop outward as a sphere at the initial stage of propagation in both containers, and pressure on the upper wall is lower than that on the right wall in the container. The pressure oscillation period in cylindrical container after the first pressure peak is not synchronous because of the irregular wall reflection. When the initial pressure of the system remains unchanged, the initial temperature increases by 20%, the total amount of substances in the container decreases, and the maximum explosion pressure decreases by 15%.

参考文献/References:

[1]周蕊, 李晓鹏. 连续旋转爆轰发动机冷流场的混合特性研究[J]. 航空学报, 2016, 37(12):3668-3674.
ZHOU R, LI X P. Numerical investigation of mixing characteristic of cold continuously rotating detonation engine[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3668-3674.
[2] CROWL D A, JO Y D. The hazards and risks of hydrogen[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(2):158-164.
[3] ZHANG Y, CHEN R K, ZHAO M K, et al. Hazard evaluation of explosion venting behaviours for premixed hydrogen-air fuels with different bursting pressures[J]. Fuel, 2020, 268:117313.
[4] KIM Y R, LEE H J, KIM S, et al. A flow visualization study on self-ignition of high pressure hydrogen gas released into a tube[J]. Proceedings of the Combustion Institute, 2013, 34(2):2057-2064.
[5] SHEN X B, XIU G L, WU S Z. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition[J]. Applied Thermal Engineering, 2017, 120:741-747.
[6]SHEN X B, ZHANG C, XIU G L, et al. Evolution of premixed stoichiometric hydrogen/air flame in a closed duct[J]. Energy, 2019, 176:265-271.
[7]SHEN X B, HE X C, SUN J H. A comparative study on premixed hydrogen-air and propane-air flame propagations with tulip distortion in a closed duct[J]. Fuel, 2015, 161:248-253.
[8]WANG L Q, MA H H, SHEN Z W. On the explosion characteristics of hydrogen-air mixtures in a constant volume vessel with an orifice plate[J]. International Journal of Hydrogen Energy, 2019, 44(12):6271-6277.
[9] ZHENG K, YU M G, LIANG Y P, et al. Large eddy simulation of premixed hydrogen/methane/air flame propagation in a closed duct[J]. International Journal of Hydrogen -Energy, 2018, 43(7):3871-3884.
[10] ZHENG K, YU M G, ZHENG L G, et al. Effects of hydrogen addition on methane-air deflagration in obstructed chamber[J]. Experimental Thermal and Fluid Science, 2017, 80:270-280.
[11] 周宁, 梅苑, 李雪, 等. 管道截面尺寸对氢气火焰传播过程影响的数值模拟[J]. 安全与环境学报, 2020, 20(6):2131-2138.
ZHOU N, MEI Y, LI X, et al. Numerical simulation for the influence of the section-size on the hydrogen flame propagation process[J]. Journal of Safety and Environment, 2020, 20(6):2131-2138.
[12]任家帆, 冯伟, 全树新, 等. 球形密闭容器内氢气浓度对混合气体燃爆特性的影响[J]. 爆破器材, 2019, 48(3):33-37,43.
REN J F, FENG W, QUAN S X, et al. Effect of hydrogen concentration on combustion and explosion characteristics of mixed gas in a spherical closed vessel[J]. Explosive Materials, 2019, 48(3):33-37,43.
[13] UGARTE O J, AKKERMAN V, RANGWALA A S. A computational platform for gas explosion venting[J]. Process Safety and Environmental Protection, 2016, 99:167-174.
[14] ZHANG Y, CAO W G, SHU C M, et al. Dynamic hazard evaluation of explosion severity for premixed hydrogen-air mixtures in a spherical pressure vessel[J]. Fuel, 2020, 261:116433.
[15]CAO W G, LI W J,ZHANG L, et al. Flame characteristics of premixed H2-air mixtures explosion venting in a spherical container through a duct[J]. International Journal of Hydrogen Energy, 2021, 46(52):26693-26707.
[16]BRAGIN M V, MAKAROV D V, MOLKOU V V. Pressure limit of hydrogen spontaneous ignition in a T-shaped channel[J]. International Journal of Hydrogen Energy, 2013, 38(19):8039-8052.

相似文献/References:

[1]曹卫国①,黄丽媛①,梁济元①,等.点火具爆炸压力的理论计算与试验研究[J].爆破器材,2013,42(04):24.[doi:10.3969/j.issn.1001-8352.2013.04.006]
 Cao Weiguo,Huang Liyuan,Liang Jiyuan,et al.Computational and Experimental Studies of Explosion Pressure of Igniter[J].EXPLOSIVE MATERIALS,2013,42(02):24.[doi:10.3969/j.issn.1001-8352.2013.04.006]
[2]彭于怀①,黄丽媛②,曹卫国①③,等.石松子粉尘爆炸危险性及抑爆研究[J].爆破器材,2014,43(06):16.[doi:10.3969/j.issn.1001-8352.2014.06.004]
 PENG Yuhuai,HUANG Liyuan,Cao Weiguo,et al.Hazards and Suppressions Research on Lycoposium Dust Explosion[J].EXPLOSIVE MATERIALS,2014,43(02):16.[doi:10.3969/j.issn.1001-8352.2014.06.004]
[3]曹卫国①②,郑俊杰①②,彭于怀①,等.玉米淀粉粉尘爆炸特性及火焰传播过程的试验研究[J].爆破器材,2016,45(01):1.[doi:10.3969/j.issn.1001-8352.2016.01.001]
 CAO Weiguo,ZHENG Junjie,PENG Yuhuai,et al.Experimental Study on Explosion Characteristics and Flame Propagation Process of Corn Starch Dust[J].EXPLOSIVE MATERIALS,2016,45(02):1.[doi:10.3969/j.issn.1001-8352.2016.01.001]
[4]马汉翔,毛浩清,张军,等.梧桐树粉尘爆炸特性研究[J].爆破器材,2017,46(06):17.[doi:10.3969/j.issn.1001-8352.2017.06.004]
 MA Hanxiang,MAO Haoqing,ZHANG Jun,et al.Explosion Characteristics of Chinese Parasol Tree Dust[J].EXPLOSIVE MATERIALS,2017,46(02):17.[doi:10.3969/j.issn.1001-8352.2017.06.004]
[5]王杰①②,张云鹏①②,葛晓东①②,等.液态CO2相变破岩参数及数值模拟研究[J].爆破器材,2022,51(04):16.[doi:10.3969/j.issn.1001-8352.2022.04.003]
 WANG Jie,ZHANG Yunpeng,GE Xiaodong,et al.Study on Rock Breaking Parameters and Numerical Simulation of Phase Transition of Liquid CO2 [J].EXPLOSIVE MATERIALS,2022,51(02):16.[doi:10.3969/j.issn.1001-8352.2022.04.003]
[6]张宇庭 徐振洋 闫祎然 宋家威 秦涛.封闭体系内丁烷-空气预混气体爆炸的试验研究[J].爆破器材,2024,53(01):51.[doi:10.3969/j.issn.1001-8352.2024.01.008]
 ZHANG Yuting,XU Zhenyang,YAN Yiran,et al.Experimental Study on the Explosion of Premixed Gas of Butane and Air in a Closed System[J].EXPLOSIVE MATERIALS,2024,53(02):51.[doi:10.3969/j.issn.1001-8352.2024.01.008]

备注/Memo

备注/Memo:
收稿日期:2021-09-23
基金项目:国家自然科学基金(12172336)
第一作者:赵懿明(1997-),男,硕士研究生,主要从事可燃气体、粉尘爆炸动力学研究。E-mail:563890771@qq.com
通信作者:曹卫国(1984-),男,博士,副教授, 主要从事粉尘、气体多相燃烧与爆炸研究。E-mail: caoweiguoiem@nuc.edu.cn
更新日期/Last Update: 2022-04-06