[1]陈玲, 赵颖彬, 逄小青, 等. HMX/TATB混合炸药中HMX与TATB组分含量的液相色谱分析[J]. 含能材料, 2020, 28(12): 1156-1162.
CHEN L, ZHAO Y B, PANG X Q, et al. Liquid chromatographic for component content in HMX/TATB explosive formulations[J]. Chinese Journal of Energetic Materials, 2020, 28(12): 1156-1162.
[2]MENG J J, LUO Y M, NIU G T, et al. Effect of additives on the interface binding strength of DNAN/HMX melt-cast explosives[J]. Journal of Energetic Materials, 2020, 38(4): 467-482.
[3]张超, 杨建刚, 陈俊波, 等. 含CL-20的改性双基推进剂冲击波感度[J]. 火炸药学报, 2020, 43(5):549-552.
ZHANG C, YANG J G, CHEN J B, et al. Shock wave sensitivity of modified doublebase propellant containing CL-20[J]. Chinese Journal of Explosives and Propellants, 2020, 43(5): 549-552.
[4]吴星亮, 王红松, 李文海, 等. RDX和HMX机械刺激临界反应阈值试验研究[J]. 爆破器材, 2020, 49(6): 9-14.
WU X L, WANG H S, LI W H, et al. Experimental study on critical response threshold of RDX and HMX under mechanical stimulation[J]. Explosive Materials, 2020, 49(6): 9-14.
[5]SONG X L, LI F S. Dependence of particle size and size distribution on mechanical sensitivity and thermal stability of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine[J]. Defence Science Journal, 2009, 59(1): 37-42.
[6]RADACSI N, STANKIEWICZ A I, CREYGHTON Y L M, et al. Electrospray crystallization for high-quality submicron-sized crystals[J]. Chemical Engineering & Technology, 2011, 34(4): 624-630.
[7]WANG J Y, LI J L, AN C W, et al. Study on ultrasound- and spray-assisted precipitation of CL-20[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(6): 670-675.
[8]张小宁, 徐更光, 何得昌, 等. 纳米级奥克托今超微颗粒制备技术研究[J]. 兵工学报, 2002, 23(4): 472-475.
ZHANG X N, XU G G, HE D C, et al. A study on the preparation technology of nanometer ultra-fine HMX particle[J]. Acta Armamentarii, 2002, 23(4): 472-475.
[9]何得昌, 周霖, 徐军培. 纳米级RDX颗粒的制备[J]. 含能材料, 2006, 14(2): 142-143,150.
HE D C, ZHOU L, XU J P. Preparation of nanoscale RDX particles[J]. Chinese Journal of Energetic Materials, 2006, 14(2): 142-143,150.
[10]陈亚芳, 王保国, 张景林, 等. 超临界GAS的工艺条件对CL20粒度和晶型的影响[J]. 火炸药学报, 2010, 33(3): 9-13.
CHEN Y F, WANG B G, ZHANG J L, et al. Influence of supercritical gas antisolvent technological conditions on particle size and modes of crystallization of CL20[J]. Chinese Journal of Explosives and Propellants, 2010, 33(3): 9-13.
[11]SIVABALAN R, GORE G M, NAIR U R, et al. Study on ultrasound assisted precipitation of CL-20 and its effect on morphology and sensitivity[J]. Journal of Hazardous Materials, 2007, 139(2): 199-203.
[12]LIU J, LI Q, ZENG J B. Mechanical pulverization for the production of sensitivity reduced nano-RDX[J]. Explosive Materials, 2013, 42(3): 1-5.
刘杰,李青,曾江保.机械粉碎法制备不敏感纳米RDX[J].爆破器材,2013, 42(3): 1-5.
[13]GAO H, LIU J, HAO G Z, et al. Study on preparation, characterization and comminution mechanism of nano-sized CL-20[J]. Chinese Journal of Explosives and Propellants,
2015, 38(2): 46-49.高寒,刘杰,郝嘎子.纳米 CL-20的制备、表征和粉碎机理研究[J]. 火炸药学报,2015, 38(2): 46-49.
[14]赵珊珊, 宋小兰, 王毅, 等. 机械球磨法制备纳米CL-20/HMX共晶炸药及其表征[J]. 固体火箭技术, 2018, 41(4): 479-482.
ZHAO S S, SONG X L, WANG Y, et al. Characterization of nano-CL-20/HMX cocrystal prepared by mechanical milling method[J]. Journal of Solid Rocket Technology, 2018, 41(4): 479-482.
[15]陈腾. RDX、TNT干燥特性实验与数学模拟[D]. 南京: 南京理工大学, 2010.
CHEN T. Experiment and mathematical simulation ofdrying characteristics of RDX and TNT[D]. Nanjing: Nanjing University of Science and Technology, 2010.
[16]郝顺利, 王新, 崔银芳, 等. 纳米粉体制备过程中粒子的团聚及控制方法研究[J]. 人工晶体学报, 2006, 35(2): 342-346.
HAO S L, WANG X, CUI Y F, et al.Investigation on the agglomerate mechanism and controlling method in nano-particle powder preparation[J]. Journal of Synthetic Crystals, 2006, 35(2): 342-346.
[17]杨利, 李泓润, 宋乃孟, 等. 喷雾干燥法制备亚微米鞣酸铁/硝胺炸药复合微球及其催化性能[J]. 含能材料, 2020, 28(2): 145-150.
YANG L, LI H R, SONG N M, et al. Preparation and catalytic properties of submicron iron tannate/nitramine explosive composite microspheres from spray drying process[J]. Chinese Journal of Energetic Materials, 2020, 28(2): 145-150.
[18]刘慧云. 超临界流体技术细化CL20研究[D]. 太原: 中北大学, 2016.
LIU H Y. Supercritical fluid technology refine CL20[D]. Taiyuan: North University of China, 2016.
[19]陶厚永, 曹伟. 多项式回归与响应面分析的原理及应用[J]. 统计与决策, 2020, 36(8): 36-40.
TAO H Y, CAO W. Principle and application of polynomial regression and response surface analysis[J].Statistics and Decision, 2020, 36(8): 36-40.
[20]朱明星, 杨伟兵. 食品真空冻干传热差异性研究[J]. 淮海工学院学报(自然科学版), 2017, 26(02): 79-83.
ZHU M X, YANG W B. Study on heat transfer difference of vacuum freezedrying of food[J]. Journal of Huaihai Institute of Technology (Natural Science -Edition), 2017, 26(2): 79-83.
[21]宿时, 李宗泽, 王贺. 响应面法优化黑蒜片真空冷冻工艺研究[J]. 中国调味品, 2019, 44(10): 55-58.
SU S, LI Z Z, WANG H. Study on optimization of vacuum freeze-drying process of black garlic slices by response surface methodology[J]. China Condiment, 2019, 44(10): 55-58.
[22]包建强, 杨永明. 青蒜真空冷冻升华干燥技术的研究[J]. 制冷, 2003, 22(4): 6-9.
BAO J Q, YANG Y M. Study on the vacuum freezedrying technics of green-garlic[J]. Refrigeration, 2003, 22(4): 6-9.
[23]张幺玄. 黑索金制造过程中固液分离过程的研究[D]. 南京: 南京理工大学, 2014.
ZHANG Y X. Research on the process for solid-liquid separation in the manufacturing process of RDX[D]. Nanjing: Nanjing University of Science and Technology, 2014.