[1]肖磊①,张黎明②,高向东③,等.超细HMX的真空冷冻干燥工艺优化及性能表征[J].爆破器材,2021,50(06):21-29.[doi:10.3969/j.issn.1001-8352.2021.06.004]
 XIAO Lei,ZHANG Liming,GAO Xiangdong,et al.Process Optimization and Properties of Superfine HMX Prepared by Vacuum Freeze-Drying Technology[J].EXPLOSIVE MATERIALS,2021,50(06):21-29.[doi:10.3969/j.issn.1001-8352.2021.06.004]
点击复制

超细HMX的真空冷冻干燥工艺优化及性能表征()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
50
期数:
2021年06
页码:
21-29
栏目:
基础理论
出版日期:
2021-11-26

文章信息/Info

Title:
Process Optimization and Properties of Superfine HMX Prepared by Vacuum Freeze-Drying Technology
文章编号:
5618
作者:
肖磊张黎明高向东刘巧娥郝嘎子胡玉冰张光普姜炜
①南京理工大学化学与化工学院(江苏南京,210094)
②西安北方惠安化学工业有限公司科研所(陕西西安,710300)
③甘肃银光化学工业集团有限公司科研所(甘肃白银,730900)
Author(s):
XIAO Lei ZHANG Liming GAO Xiangdong LIU Qiaoe HAO Gazi HU YubingZHANG Guangpu JIANG Wei
①School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
②Research Institute, Xi’an North Huian Chemical Industries Co., Ltd. (Shaanxi Xi’an, 710300)
③Research Institute, Gansu Yinguang Chemical Industry Group Co., Ltd.(Gansu Baiyin,730900)
关键词:
硝胺炸药超细HMX真空冷冻干燥干燥效率响应面法
Keywords:
nitramine explosive superfine HMX vacuum freeze-drying drying efficiency response surface
分类号:
TQ560.6
DOI:
10.3969/j.issn.1001-8352.2021.06.004
文献标志码:
A
摘要:
为改善超细硝胺类炸药浆料的干燥效果,采用单因素实验法和响应面实验设计法,综合分析了真空度、浆料厚度以及分散液中乙醇与水的质量比等主要工艺参数对超细HMX浆料干燥过程的影响规律,建立了超细HMX的最佳干燥曲线拟合模型,获得了最优干燥工艺参数。同时,结合实验进行验证,并采用扫描电子显微镜(SEM)和撞击感度仪分别对干燥前、后超细HMX的微观形貌及安全性能进行了测试、分析。结果表明:超细HMX浆料的干燥速率随真空度的增加先增大后减小,随浆料厚度的增加先减小后增大,随乙醇与水的质量比的增加而增大;超细HMX浆料真空冷冻干燥的优化工艺为:浆料厚度7 mm、真空度50 Pa、乙醇与水质量比0.4;工艺优化后的超细HMX颗粒分散性好,无团聚,安全性不变。
Abstract:
In order to improve the drying performance of superfine nitramine explosive slurry, single factor experiment and response surface experimental design method were used to analyze the influence of vacuum degree, material thickness and mass ratio of ethanol to water on the drying process of superfine HMX slurry. The best drying curve fitting models of superfine HMX were established and the optimal drying process parameters were obtained. Meanwhile, it was verified by experiment. Microstructure and safety of superfine HMX before and after drying process were analyzed by SEM and impact sensitivity test. The results show that drying rate of superfine HMX slurry increases first and then decreases with the increase of vacuum degree, it decreases first and then increases with the increase of material thickness, and it increases with the increase of mass ratio of ethanol to water. The optimal drying parameters of vacuum freeze-drying process of superfine HMX slurry are material thickness of 7 mm, vacuum degree of 50 Pa, and mass ratio of ethanol to water of 0.4. Superfine HMX particles after optimization have good dispersion, no agglomeration, and unchanged safety.

参考文献/References:

[1]陈玲, 赵颖彬, 逄小青, 等. HMX/TATB混合炸药中HMX与TATB组分含量的液相色谱分析[J]. 含能材料, 2020, 28(12): 1156-1162.
CHEN L, ZHAO Y B, PANG X Q, et al. Liquid chromatographic for component content in HMX/TATB explosive formulations[J]. Chinese Journal of Energetic Materials, 2020, 28(12): 1156-1162.
[2]MENG J J, LUO Y M, NIU G T, et al. Effect of additives on the interface binding strength of DNAN/HMX melt-cast explosives[J]. Journal of Energetic Materials, 2020, 38(4): 467-482.
[3]张超, 杨建刚, 陈俊波, 等. 含CL-20的改性双基推进剂冲击波感度[J]. 火炸药学报, 2020, 43(5):549-552.
ZHANG C, YANG J G, CHEN J B, et al. Shock wave sensitivity of modified doublebase propellant containing CL-20[J]. Chinese Journal of Explosives and Propellants, 2020, 43(5): 549-552.
[4]吴星亮, 王红松, 李文海, 等. RDX和HMX机械刺激临界反应阈值试验研究[J]. 爆破器材, 2020, 49(6): 9-14.
WU X L, WANG H S, LI W H, et al. Experimental study on critical response threshold of RDX and HMX under mechanical stimulation[J]. Explosive Materials, 2020, 49(6): 9-14.
[5]SONG X L, LI F S. Dependence of particle size and size distribution on mechanical sensitivity and thermal stability of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine[J]. Defence Science Journal, 2009, 59(1): 37-42.
[6]RADACSI N, STANKIEWICZ A I, CREYGHTON Y L M, et al. Electrospray crystallization for high-quality submicron-sized crystals[J]. Chemical Engineering & Technology, 2011, 34(4): 624-630.
[7]WANG J Y, LI J L, AN C W, et al. Study on ultrasound- and spray-assisted precipitation of CL-20[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(6): 670-675.
[8]张小宁, 徐更光, 何得昌, 等. 纳米级奥克托今超微颗粒制备技术研究[J]. 兵工学报, 2002, 23(4): 472-475.
ZHANG X N, XU G G, HE D C, et al. A study on the preparation technology of nanometer ultra-fine HMX particle[J]. Acta Armamentarii, 2002, 23(4): 472-475.
[9]何得昌, 周霖, 徐军培. 纳米级RDX颗粒的制备[J]. 含能材料, 2006, 14(2): 142-143,150.
HE D C, ZHOU L, XU J P. Preparation of nanoscale RDX particles[J]. Chinese Journal of Energetic Materials, 2006, 14(2): 142-143,150.
[10]陈亚芳, 王保国, 张景林, 等. 超临界GAS的工艺条件对CL20粒度和晶型的影响[J]. 火炸药学报, 2010, 33(3): 9-13.
CHEN Y F, WANG B G, ZHANG J L, et al. Influence of supercritical gas antisolvent technological conditions on particle size and modes of crystallization of CL20[J]. Chinese Journal of Explosives and Propellants, 2010, 33(3): 9-13.
[11]SIVABALAN R, GORE G M, NAIR U R, et al. Study on ultrasound assisted precipitation of CL-20 and its effect on morphology and sensitivity[J]. Journal of Hazardous Materials, 2007, 139(2): 199-203.
[12]LIU J, LI Q, ZENG J B. Mechanical pulverization for the production of sensitivity reduced nano-RDX[J]. Explosive Materials, 2013, 42(3): 1-5.
刘杰,李青,曾江保.机械粉碎法制备不敏感纳米RDX[J].爆破器材,2013, 42(3): 1-5.
[13]GAO H, LIU J, HAO G Z, et al. Study on preparation, characterization and comminution mechanism of nano-sized CL-20[J]. Chinese Journal of Explosives and Propellants,
2015, 38(2): 46-49.高寒,刘杰,郝嘎子.纳米 CL-20的制备、表征和粉碎机理研究[J]. 火炸药学报,2015, 38(2): 46-49.
[14]赵珊珊, 宋小兰, 王毅, 等. 机械球磨法制备纳米CL-20/HMX共晶炸药及其表征[J]. 固体火箭技术, 2018, 41(4): 479-482.
ZHAO S S, SONG X L, WANG Y, et al. Characterization of nano-CL-20/HMX cocrystal prepared by mechanical milling method[J]. Journal of Solid Rocket Technology, 2018, 41(4): 479-482.
[15]陈腾. RDX、TNT干燥特性实验与数学模拟[D]. 南京: 南京理工大学, 2010.
CHEN T. Experiment and mathematical simulation ofdrying characteristics of RDX and TNT[D]. Nanjing: Nanjing University of Science and Technology, 2010.
[16]郝顺利, 王新, 崔银芳, 等. 纳米粉体制备过程中粒子的团聚及控制方法研究[J]. 人工晶体学报, 2006, 35(2): 342-346.
HAO S L, WANG X, CUI Y F, et al.Investigation on the agglomerate mechanism and controlling method in nano-particle powder preparation[J]. Journal of Synthetic Crystals, 2006, 35(2): 342-346.
[17]杨利, 李泓润, 宋乃孟, 等. 喷雾干燥法制备亚微米鞣酸铁/硝胺炸药复合微球及其催化性能[J]. 含能材料, 2020, 28(2): 145-150.
YANG L, LI H R, SONG N M, et al. Preparation and catalytic properties of submicron iron tannate/nitramine explosive composite microspheres from spray drying process[J]. Chinese Journal of Energetic Materials, 2020, 28(2): 145-150.
[18]刘慧云. 超临界流体技术细化CL20研究[D]. 太原: 中北大学, 2016.
LIU H Y. Supercritical fluid technology refine CL20[D]. Taiyuan: North University of China, 2016.
[19]陶厚永, 曹伟. 多项式回归与响应面分析的原理及应用[J]. 统计与决策, 2020, 36(8): 36-40.
TAO H Y, CAO W. Principle and application of polynomial regression and response surface analysis[J].Statistics and Decision, 2020, 36(8): 36-40.
[20]朱明星, 杨伟兵. 食品真空冻干传热差异性研究[J]. 淮海工学院学报(自然科学版), 2017, 26(02): 79-83.
ZHU M X, YANG W B. Study on heat transfer difference of vacuum freezedrying of food[J]. Journal of Huaihai Institute of Technology (Natural Science -Edition), 2017, 26(2): 79-83.
[21]宿时, 李宗泽, 王贺. 响应面法优化黑蒜片真空冷冻工艺研究[J]. 中国调味品, 2019, 44(10): 55-58.
SU S, LI Z Z, WANG H. Study on optimization of vacuum freeze-drying process of black garlic slices by response surface methodology[J]. China Condiment, 2019, 44(10): 55-58.
[22]包建强, 杨永明. 青蒜真空冷冻升华干燥技术的研究[J]. 制冷, 2003, 22(4): 6-9.
BAO J Q, YANG Y M. Study on the vacuum freezedrying technics of green-garlic[J]. Refrigeration, 2003, 22(4): 6-9.
[23]张幺玄. 黑索金制造过程中固液分离过程的研究[D]. 南京: 南京理工大学, 2014.
ZHANG Y X. Research on the process for solid-liquid separation in the manufacturing process of RDX[D]. Nanjing: Nanjing University of Science and Technology, 2014.

备注/Memo

备注/Memo:
收稿日期:2021-06-08
基金项目:国家自然科学基金资助(21805139);中国博士后科学基金(2020M673527)
第一作者:肖磊(1992-),男,讲师,研究方向为微纳米含能材料制备及应用技术。E-mail:15005161138@163.com
通信作者:姜炜(1974-),男,研究员,研究方向为微纳米含能材料制备及应用技术。E-mail:climentjw@126.com
更新日期/Last Update: 2021-11-22