[1]南宇翔,蒋建伟,王树有,等.子弹药落地冲击响应数值模拟及实验验证[J].振动与冲击, 2013, 32(3):182-187.
NAN Y X, JIANG J W, WANG S Y, et al. Numerical simulation and test for impact response of submunitions drop [J]. Journal of Vibration and Shock, 2013, 32(3):182-187.
[2]代晓淦,申春迎,文玉史.模拟跌落撞击下PBX-2炸药的响应[J].含能材料, 2011, 19(2): 209-212.
DAI X G, SHEN C Y, WEN Y S. Reaction of PBX2 explosive under simulated drop impact [J]. Chinese Journal of Energetic Materials, 2011, 19(2): 209-212.
[3]王晨, 陈朗, 何乐,等.低强度冲击下炸药点火的数值模拟[J].火炸药学报, 2012, 35(2):44-48.
WANG C, CHEN L, HE L, et al. Numerical simulation of explosive ignition under low intensity impact [J]. Chinese Journal of Explosives & Propellants, 2012, 35(2):44-48.
[4]高大元,申春迎,黄谦,等.炸药件在模拟跌落试验中的响应[J].火炸药学报, 2012, 35(5):13-16.
GAO D Y, SHEN C Y, HUANG Q, et al. Reaction of explosive subassembly under simulated drop test [J]. Chinese Journal of Explosives & Propellants, 2012, 35(5):13-16.
[5]DIENES J K. Frictional hot-spots and propellant sensitivity [J]. MRS Online Proceedings Libarary, 1983, 24:373-381.
[6]BENNETT J G, HABERMAN K S, JOHNSON J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(12):2303-2322.
[7]YANG K, WU Y Q, HUANG F L, et al. Numerical simulations of mechanical and ignition-deflagration responses for PBXs under low-to-medium-level velocity impact loading[J]. Journal of Hazardous Materials, 2017, 337: 148-162.?
[8]李聪, 赵宏伟, 孙琳琳. 基于纳米压痕分析的往复扭转载荷下45号钢的力学性能[J]. 吉林大学学报(工学版), 2019, 49(3): 859-864.
LI C, ZHAO H W, SUN L L. Mechanical properties of 45 steel under reciprocating torsional load based on nanoindentation analysis [J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 859-864.
[9]ZHU D L, ZHOU L, ZHANG X R, et al. Simultaneous determination of multiple mechanical parameters for a DNAN/HMX melt-cast explosive by Brazilian disc test combined with digital image correlation method[J]. Propellants, Explosives, Pyrotechnics, 2017,42(8): 864-872.
[10]蒙君煚,张向荣,周霖,等.DNAN基熔铸炸药成型过程数值仿真[J].兵工学报, 2013, 34(7):810-814.
MENG J J, ZHANG X R, ZHOU L, et al. Simulation of solidification process for DNAN-based melt-cast explosives[J]. Acta Armamentarii, 2013, 34(7):810-814.
[11]蒙君煚,周霖,金大勇,等.成型工艺对2,4-二硝基苯甲醚基熔铸炸药装药质量的影响[J].兵工学报, 2018, 39(9): 1719-1726.
MENG J J, ZHOU, JIN D Y, et al. Effect of forming process on casting quality of 2,4-dinitroanisole-based casting explosive [J]. Acta Armamentarii, 2018, 39(9):1719-1726.
[12]孔斌.粒状发射药力学性能实验与仿真研究[D]. 太原:中北大学, 2019.
KONG B. Experimental and simulation study on mechanical properties of granular propellants[D]. Taiyuan: North University of China, 2019.
[13]赵奇.弹体侵彻靶板过程中弹体温度场数值模拟研究[D].太原:中北大学,2016.
ZHAO Q. Research the temperature field of the projectile in the process of the projectile penetrating target plate by the numerical simulation [D]. Taiyuan: North University of China, 2016.
[14]洪昊,朱敏,王盛凹,等.半球形炸药部件跌落应力分析[J]. 兵器装备工程学报, 2019, 40(12):210-214.
HONG H, ZHU M, WANG S A, et al. Stress analysis of dropping of hemispherical explosive part [J]. Journal of Ordnance Equipment Engineering, 2019, 40(12): 210-214.
[15]倪庆乐,王雨时,闻泉,等.基于有限元的裸态弹丸底向下跌落冲击特性[J]. 探测与控制学报, 2016, 38(6): 51-56.
NI Q L, WANG Y S, WEN Q, et al. Drop impact properties of projectile without package bottom down based finite element[J]. Journal of Detection & Control, 2016, 38(6): 51-56.
[16]Safety drop. Munition test procedures: STANAG 4375-2003[S]. Brussels: NATO, 2003.
[17]Test method standard, hazard assessment tests for non nuclear munitions: MIL—STD—2105D [S]. Department of Defense, US, 2011.