[1]CAO W G, QIN Q F, CAO W, et al. Experimental and numerical studies on the explosion severities of coal dust/air mixtures in a 20-L spherical vessel [J]. Powder Technology, 2017, 310:17-23.
[2]SKJOLD T, CASTELLANOS D, OLSEN K L, et al. Experimental and numerical investigation of constant volume dust and gas explosions in a 3.6m flame acceleration tube [J]. Journal of Loss Prevention in the Process Industries, 2014, 30:164-176.
[3]CASTELLANOS D, SKJOLD T, VAN WINGERDEN K, et al. Validation of the DESC code in simulating the effect of vent ducts on dust explosions [J]. Industrial & Engineering Chemistry Research, 2013, 52 (17): 6057-6067.
[4]CLONEY C T, RIPLEY R C, PEGG M J, et al. Lower flammability limits of hybrid mixtures containing 10 micron coal dust particles and methane gas [J]. Process Safety and Environmental Protection, 2018, 120:215-226.
[5]CLONEY C T, RIPLEY R C, PEGG M J, et al. Laminar combustion regimes for hybrid mixtures of coal dust with methane gas below the gas lower flammability limit [J]. Combustion and Flame, 2018, 198: 14-23.
[6]刘义, 孙金华, 陈东梁, 等. 甲烷煤尘复合体系中煤尘爆炸下限的实验研究[J]. 安全与环境学报, 2007, 7(4): 129-131.
LIU Y, SUN J H, CHEN D L, et al. On lower limit of explosive coal dust in coal dust mixture with methane [J]. Journal of Safety and Environment, 2007, 7(4): 129-131.
[7]景国勋, 邵泓源, 吴昱楼, 等. 半封闭管道内瓦斯煤尘爆炸火焰传播特性试验[J]. 安全与环境学报, 2020, 20(4): 1321-1326.
JING G X, SHAO H Y, WU Y L, et al. Experimental approach to the flame propagation features of the explosive gas and coal dust in the semienclosed pipeline[J]. Journal of Safety and Environment, 2020, 20(4): 1321-1326.
[8]TAN X, SCHMIDT M, ZHAO P, et al. Minimum ignition temperature of carbonaceous dust clouds in air with CH4/H2/CO below the gas lower explosion limit[J]. Fuel, 2020, 264: 116811.
[9]ZHAO P, TAN X, SCHMIDT M, et al. Minimum explosion concentration of coal dusts in air with small amount of CH4/H2/CO under 10-kJ ignition energy conditions [J]. Fuel, 2020, 260: 116401.
[10]GAO W, YU J L, LI J, et al. Experimental investigation on micro-and nano-PMMA dust explosion venting at elevated static activation overpressures [J]. Powder Technology, 2016, 301: 713-722.
[11]GAO W, MOGI T, YU J L, et al. Flame propagation mechanisms in dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 186-194.
[12]XU S, LIU J F, CAO W, et al. Experimental study on the minimum ignition temperature and combustion kinetics of coal dust/air mixtures [J]. Powder Technology, 2017, 317: 154-161.
[13]ZHANG Y, CAO W G, RAO G N, et al. Experiment-based investigations on the variation laws of functional groups on ignition energy of coal dusts [J]. Combustion Science and Technology, 2018, 190(10): 1850-1860.
[14]袁帅, 王庆慧, 王丹枫, 等. 粉尘爆炸防护措施的研究进展[J]. 爆破器材, 2017, 46(4):13-20.
YUAN S, WANG Q H, WANG D, et al. Research progress of preventive and control measures for dust explosion [J]. Explosive Materials, 2017, 46(4):13-20.
[15]苏浩, 仲海霞, 曹勇, 等. 锆金属粉尘云最小点火能和最低着火温度的试验研究[J]. 爆破器材, 2019, 48(2):25-31.
SU H, ZHONG H X, CAO Y, et al. Experimental investigation of the minimum ignition energy and the minimum ignition temperature of zirconium dust cloud[J]. Explosive Materials, 2019, 48(2):25-31.
[16]American Society for Testing Material. Standard test method for minimum autoignition temperature of dust clouds:ASTM E1491—06(2019)[S]. West Conshohocken, PA, US: ASTM International,2019.
[17]高聪, 李化, 苏丹, 等. 密闭空间煤粉的爆炸特性[J]. 爆炸与冲击, 2010, 30(2):164-168.
GAO C, LI H, SU D, et al. Explosion characteristics of coal dust in a sealed vessel [J]. Explosion and Shock Waves, 2010, 30(2):164-168.
[18]SOLOMON P R, SERIO M A, SUUBERG E M. Coal pyrolysis: experiments, kinetic rates and mechanisms [J]. Progress in Energy and Combustion Science, 1992, 18(2):133-220.
[19]SOLOMON P R, FLETCHER T H, PUGMIRE R J. Progress in coal pyrolysis [J]. Fuel, 1993, 72(5):587-597.
[20]MIURA K. Mild conversion of coal for producing valuable chemicals [J]. Fuel Processing Technology, 2000, 62(2/3):119-135.
[21]LIU Z Y, GUO X J, SHI L, et al. Reaction of volatiles: A crucial step in pyrolysis of coals [J]. Fuel, 2015, 154:361-369.
[22]WOLFRUM E A. Correlations between petrographical properties, chemical structure, and technological behavior of rhenish brown coal [M]//The chemistry of low-rank coals. Washington D C,US:ACS Publications, 1984:15-37.
[23]MATTSSON T R, LANE J M D, COCHRANE K R, et al. First-principles and classical molecular dynamics simulation of shocked polymers[J]. Physical Review B, 2010, 81:054103.
[24]CAO W G, CAO W, PENG Y H, et al. Experimental study on the combustion sensitivity parameters and precombusted changes in functional groups of lignite coal dust [J]. Powder Technology, 2015, 283:512-518.