[1]TU J, XU H, LIANG L, et al. Preparation of high self-healing efficient crosslink HTPB adhesive for improving debonding of propellant interface[J]. New Journal of Chemistry, 2020, 44:19184-19191.
[2]LI Y B, YANG Z J, ZHANG J H, et al. Novel polyurethane with high self-healing efficiency for functional energetic composites[J]. Polymer Testing, 2019, 76: 82-89.
[3]LI H,BAI J,SHI Z X, et al. Environmental friendly polymers based on schiff-base reaction with self-healing, remolding and degradable ability[J]. Polymer, 2016, 85: 106-113.
[4]YANG J X, LONG Y Y, PAN L, et al. Spontaneously healable thermoplastic elastomers achieved through one-pot living ringopening metathesis copolymerization of well-designed bulky monomers[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12445-12455.
[5]LI C H, WANG C, KEPLINGER C, et al. A highly stretchable autonomous self-healing elastomer[J]. Nature Chemistry, 2016, 8(6): 618-624.
[6]AN S Y,NOH S M,NAM J H, et al. Dual sulfide-disulfide crosslinked networks with rapid and room temperature self-healability[J]. Macromolecular Rapid Communications, 2015, 36(13): 1255-1260.
[7]GAO W T, BIE M Y, LIU F, et al. Self-healable and reprocessable polysulfide sealants prepared from liquid polysulfide oligomer and epoxy resin[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15798-15808.
[8]MICHAL B T, JAYE C A, SPENCER E J, et al. Inherently photohealable and thermal shape-memory polydisulfide networks[J]. ACS Macro Letters, 2013, 2(8): 694-699.
[9]LIU Q, LIU Y B, ZHENG H, et al. Design and development of self-repairable and recyclable crosslinked poly(thiourethane-urethane) via enhanced aliphatic disulfide chemistry[J]. Journal of Polymer Science, 2020, 58(8):1092-1104.?
[10]黄晓文, 张士玉, 赵凯锋,等. 含双硫键的自修复交联聚氨酯弹性体的合成与性能[J]. 高分子通报, 2018(5): 67-72.
HUANG X W, ZHANG S Y, ZHAO K F, et al. Synthesis and characterization of cross-linked self-healing polyurethane elastomer containing disulfide bonds[J]. Polymer Bulletin, 2018(5): 67-72.
[11]KIM S M, JEON H, SHIN S H, et al. Self-healing materials: superior toughness and fast self-healing at room temperature engineered by transparent elastomers[J]. Advanced Materials, 2018, 30(1): 1870001.
[12]王巍巍. 热可逆自修复弹性体的制备、结构与性能研究[D]. 广州: 华南理工大学, 2015.
WANG W W. Studies on preparation, structure and properties of thermally reversible self-healing elastomers[D]. Guangzhou: South China University of Technology, 2015.
[13]GAO W T, BIE M Y, QUAN Y W, et al. Self-healing, reprocessing and sealing abilities of polysulfide-based polyurethane[J]. Polymer, 2018, 151: 27-33.
[14]菅晓霞, 宋育芳, 赵盟辉, 等. GAP基自修复粘结剂的制备及性能[J]. 含能材料, 2019, 27(2): 131-136.
JIAN X X, SONG Y F, ZHAO M H, et al. Preparation and performance of self-healing binder based on GAP[J]. Chinese Journal of Energetic Materials, 2019, 27(2): 131-136.
[15]JIAN X X, HU Y W, ZHOU W L, et al. Self-healing polyurethane based on disulfide bond and hydrogen bond[J]. Polymers for Advanced Technologies, 2018, 29(1): 463-469.
[16]朱广超, 王贵友, 胡春圃. 交联密度对脂肪族聚氨酯弹性体结构与性能的影响[J]. 高分子学报, 2011(3): 274-280.
ZHU G C, WANG G Y, HU C P. Effect of crosslink density on the structures and properties of aliphatic polyurethane elastomer[J]. Acta Polymerica Sinica, 2011(3): 274-280.
[17]KIM S M, JEON H, SHIN S H, et al. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers[J]. Advanced Materials, 2018, 30(1): 1705145.
[18]NEVEJANS S, BALLARD N, FERN-NDEZ M, et al. The challenges of obtaining mechanical strength in self-healing polymers containing dynamic covalent bonds[J]. Polymer, 2019, 179: 121670.
[19]李春涛, 易玉华, 李宗景. 采用热重分析法预测PTMG型聚氨酯弹性体的使用寿命[J]. 聚氨酯工业, 2015, 30(6):16-19.
LI C T, YI Y H, LI Z J.Service life prediction of PTMG polyurethane elastomer by thermogravimetry[J].Polyurethane Industry, 2015, 30(6):16-19.