[1]李千龙①,王梓豪①,陈康①,等.高强度自修复聚氨酯弹性体的制备及性能[J].爆破器材,2021,50(06):1-7.[doi:10.3969/j.issn.1001-8352.2021.06.001]
 LI Qianlong,WANG Zihao,CHEN Kang,et al.Preparation and Performances of Self-Healing Polyurethane Elastomers with High Strength[J].EXPLOSIVE MATERIALS,2021,50(06):1-7.[doi:10.3969/j.issn.1001-8352.2021.06.001]
点击复制

高强度自修复聚氨酯弹性体的制备及性能()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
50
期数:
2021年06
页码:
1-7
栏目:
基础理论
出版日期:
2021-11-26

文章信息/Info

Title:
Preparation and Performances of Self-Healing Polyurethane Elastomers with High Strength
文章编号:
5596
作者:
李千龙王梓豪陈康菅晓霞汤凯月周伟良肖乐勤
①南京理工大学钱学森学院(江苏南京,210094)
②南京理工大学化学与化工学院(江苏南京,210094)
Author(s):
LI Qianlong WANG Zihao CHEN Kang JIAN Xiaoxia TANG Kaiyue ZHOU Weiliang XIAO Leqin
① Tsien Hsue-shen College, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
② School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
双硫键自修复氢键聚氨酯弹性体
Keywords:
disulfide bond self-healing hydrogen bond polyurethane elastomer
分类号:
TJ04 ;V512+.3
DOI:
10.3969/j.issn.1001-8352.2021.06.001
文献标志码:
A
摘要:
针对自修复材料力学性能和自修复性难以兼顾的问题,采用传统预聚体法,引入含双硫结构的交联剂,制备得到既具有一定力学强度、又具有良好自修复性的聚氨酯弹性体。采用红外光谱进行化学结构表征;采用邵氏硬度计进行硬度测定;采用万能力学试验机考察了不同条件下的自修复效率;通过三维视频显微镜和拍照记录弹性体自修复过程;采用热重分析仪对样品进行热性能表征。结果表明,双硫键被成功引入弹性体中,弹性体邵氏硬度大多可达50 HA以上。升高温度和延长时间都能提高弹性体的自修复效率:24 h时,自修复效率从25 ℃的31.3%升高到80 ℃的99.5%;在80 ℃下,自修复效率从2 h的48.4 %提高到24 h的99.5%。双硫交联剂质量分数的增加也有利于自修复,弹性体的自修复效率从PUSS3的54.5%提高到PUSS6的99.5%。热重分析显示,弹性体的热稳定性随双硫质量分数的增加而略有下降,但所有弹性体的5%热失重温度都高于265.0 ℃。
Abstract:
The polyurethane elastomers with high mechanical strength and excellent self-healing properties were synthesized by traditional prepolymer method by introducing disulfide crosslinking agent to balance contradictions between mechanical properties and self-healing properties of self-healing materials. FT-IR was used to characterize the chemical structure. The hardness were measured by Shore hardness tester. The universal testing machine was used to test the self-healing efficiency at different conditions. The healing process were recorded by three-dimensional video microscope and photographing. And the thermal properties of the samples were characterized by a thermogravimetric analyzer. The results show that the disulfide structure is successfully introduced into the polyurethane elastomer, and most of Shore hardness of elastomer can reach more than 50 HA. Increasing temperature and prolonging time can improve self-healing efficiency of the elastomer. After 24 h of self-healing, the self-healing efficiency increases from 31.3% at 25 ℃ to 99.5% at 80 ℃. And at 80 ℃, the self-healing efficiency increased from 48.4% in 2 h to 99.5% in 24 h. The increase of the content of disulfide cross-linking agent is also beneficial to self-healing, and the healing efficiency of the elastomer has increased from 54.5% of PUSS-3 to 99.5% of PUSS-6. Thermogravimetric analysis shows that the thermal stability of the elastomer decreases slightly with the increase of disulfide content, but the 5% thermal weight loss temperature of all elastomers is higher than 265.0 ℃.

参考文献/References:

[1]TU J, XU H, LIANG L, et al. Preparation of high self-healing efficient crosslink HTPB adhesive for improving debonding of propellant interface[J]. New Journal of Chemistry, 2020, 44:19184-19191.
[2]LI Y B, YANG Z J, ZHANG J H, et al. Novel polyurethane with high self-healing efficiency for functional energetic composites[J]. Polymer Testing, 2019, 76: 82-89.
[3]LI H,BAI J,SHI Z X, et al. Environmental friendly polymers based on schiff-base reaction with self-healing, remolding and degradable ability[J]. Polymer, 2016, 85: 106-113.
[4]YANG J X, LONG Y Y, PAN L, et al. Spontaneously healable thermoplastic elastomers achieved through one-pot living ringopening metathesis copolymerization of well-designed bulky monomers[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12445-12455.
[5]LI C H, WANG C, KEPLINGER C, et al. A highly stretchable autonomous self-healing elastomer[J]. Nature Chemistry, 2016, 8(6): 618-624.
[6]AN S Y,NOH S M,NAM J H, et al. Dual sulfide-disulfide crosslinked networks with rapid and room temperature self-healability[J]. Macromolecular Rapid Communications, 2015, 36(13): 1255-1260.
[7]GAO W T, BIE M Y, LIU F, et al. Self-healable and reprocessable polysulfide sealants prepared from liquid polysulfide oligomer and epoxy resin[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15798-15808.
[8]MICHAL B T, JAYE C A, SPENCER E J, et al. Inherently photohealable and thermal shape-memory polydisulfide networks[J]. ACS Macro Letters, 2013, 2(8): 694-699.
[9]LIU Q, LIU Y B, ZHENG H, et al. Design and development of self-repairable and recyclable crosslinked poly(thiourethane-urethane) via enhanced aliphatic disulfide chemistry[J]. Journal of Polymer Science, 2020, 58(8):1092-1104.?
[10]黄晓文, 张士玉, 赵凯锋,等. 含双硫键的自修复交联聚氨酯弹性体的合成与性能[J]. 高分子通报, 2018(5): 67-72.
HUANG X W, ZHANG S Y, ZHAO K F, et al. Synthesis and characterization of cross-linked self-healing polyurethane elastomer containing disulfide bonds[J]. Polymer Bulletin, 2018(5): 67-72.
[11]KIM S M, JEON H, SHIN S H, et al. Self-healing materials: superior toughness and fast self-healing at room temperature engineered by transparent elastomers[J]. Advanced Materials, 2018, 30(1): 1870001.
[12]王巍巍. 热可逆自修复弹性体的制备、结构与性能研究[D]. 广州: 华南理工大学, 2015.
WANG W W. Studies on preparation, structure and properties of thermally reversible self-healing elastomers[D]. Guangzhou: South China University of Technology, 2015.
[13]GAO W T, BIE M Y, QUAN Y W, et al. Self-healing, reprocessing and sealing abilities of polysulfide-based polyurethane[J]. Polymer, 2018, 151: 27-33.
[14]菅晓霞, 宋育芳, 赵盟辉, 等. GAP基自修复粘结剂的制备及性能[J]. 含能材料, 2019, 27(2): 131-136.
JIAN X X, SONG Y F, ZHAO M H, et al. Preparation and performance of self-healing binder based on GAP[J]. Chinese Journal of Energetic Materials, 2019, 27(2): 131-136.
[15]JIAN X X, HU Y W, ZHOU W L, et al. Self-healing polyurethane based on disulfide bond and hydrogen bond[J]. Polymers for Advanced Technologies, 2018, 29(1): 463-469.
[16]朱广超, 王贵友, 胡春圃. 交联密度对脂肪族聚氨酯弹性体结构与性能的影响[J]. 高分子学报, 2011(3): 274-280.
ZHU G C, WANG G Y, HU C P. Effect of crosslink density on the structures and properties of aliphatic polyurethane elastomer[J]. Acta Polymerica Sinica, 2011(3): 274-280.
[17]KIM S M, JEON H, SHIN S H, et al. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers[J]. Advanced Materials, 2018, 30(1): 1705145.
[18]NEVEJANS S, BALLARD N, FERN-NDEZ M, et al. The challenges of obtaining mechanical strength in self-healing polymers containing dynamic covalent bonds[J]. Polymer, 2019, 179: 121670.
[19]李春涛, 易玉华, 李宗景. 采用热重分析法预测PTMG型聚氨酯弹性体的使用寿命[J]. 聚氨酯工业, 2015, 30(6):16-19.
LI C T, YI Y H, LI Z J.Service life prediction of PTMG polyurethane elastomer by thermogravimetry[J].Polyurethane Industry, 2015, 30(6):16-19.

备注/Memo

备注/Memo:
收稿日期:2021-04-13
基金项目:基础加强计划技术领域基金(2019-JCJQ-JJ-364);上海航天科技创新基金(SAST2020-096)
第一作者:李千龙(2000-),本科生,主要从事高分子材料聚氨酯方面的研究。E-mail:Li_QianLong@outlook.com
通信作者:菅晓霞(1980-),副研究员,博士,主要从事高分子材料和含能材料研究。E-mail:jxx259@njust.edu.cn
更新日期/Last Update: 2021-11-19