[1]霸书红,沈红旗.高氯酸铵粒径对3D打印含能树脂药柱燃烧性能的影响[J].爆破器材,2021,50(04):18-22,29.[doi:10.3969/j.issn.1001-8352.2021.04.004]
 BA Shuhong,SHEN Hongqi.Effect of Particle Size of Ammonium Perchlorate on Combustion Performance of 3D Printed Energetic Resin Grain[J].EXPLOSIVE MATERIALS,2021,50(04):18-22,29.[doi:10.3969/j.issn.1001-8352.2021.04.004]
点击复制

高氯酸铵粒径对3D打印含能树脂药柱燃烧性能的影响()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
50
期数:
2021年04
页码:
18-22,29
栏目:
爆炸材料
出版日期:
2021-07-07

文章信息/Info

Title:
Effect of Particle Size of Ammonium Perchlorate on Combustion Performance of 3D Printed Energetic Resin Grain
文章编号:
5593
作者:
霸书红沈红旗
沈阳理工大学(辽宁沈阳,110159)
Author(s):
BA Shuhong SHEN Hongqi
Shenyang Ligong University (Liaoning Shenyang,110159)
关键词:
高氯酸铵粒径3D打印含能树脂药柱燃烧性能
Keywords:
ammonium perchlorate particle size 3D printing energetic resin grain combustion performance
分类号:
TJ55;TQ564
DOI:
10.3969/j.issn.1001-8352.2021.04.004
文献标志码:
A
摘要:
为了改善光敏树脂的燃烧性能,通过添加不同粒径和含量的高氯酸铵(AP)作为氧化剂,利用3D技术打印出含能树脂药柱。考察了AP在光敏树脂中的分散性及燃烧性能。结果表明:粒径为5.28 μm的AP在光敏树脂中的分散性最好;打印成型的含能树脂药柱燃速最快,残渣率最小。与打印成型的纯树脂药柱相比,该药柱的燃速提高了14倍,残渣率降低了94.30%。随着AP的质量分数从10%增至50%,药柱燃烧性能明显改善;当AP的质量分数为50%时,含能树脂药柱的燃速最高,残渣率最小,分别为1.05 mm/s和1.10 %。差热分析表明,含粒径为5.28 μm的AP的含能树脂药柱温度峰值出现最早,放热量最高。
Abstract:
In order to improve the combustion performance of photosensitive resin, energetic resin grain was printed by 3D technology by adding ammonium perchlorate (AP) with different particle sizes and contents as oxidant. Dispersion and combustion performance of AP in photosensitive resin were investigated. The results show that AP with a particle size of 5.28 μm has the best dispersibility in photosensitive resin, burning rate of energetic resin grain formed by printing is the fastest, and its residue rate is the smallest. Compared with the pure resin printed grain, burning rate of the grain increases by 93.34%, and residue rate reduces by 94.28%. With the increase of mass fraction of AP from 10% to 50%, combustion performance of grain is obviously improved. When mass fraction of AP is 50%, burning rate of energetic resin grain is the highest and the residue rate is the lowest, which are 1.05 mm/s and 1.10%, respectively. Differential thermal analysis results show that peak value of energetic resin grain containing AP with a particle size of 5.28 μm appears earliest, and the heat release is the highest.

参考文献/References:

[1]彭翠枝. 含能材料增材制造技术:新兴的精密高效安全制备技术[J]. 含能材料,2019,27(6): 445-447.
[2]CATTANI P A, FLECK T J, RHOADS J F, et al. Applications of additive manufacturing techniques in making energetic materials[C]//Summer Undergraduate Research Fellowship (SURF) Symposium. West Lafayette, OH US,2016:1-8.
[3]DOLMAN B, HART A, JOHNSTON I, et al. Advanced munitions: 3D printed firepower[C]//International Conference on Science and Innovation for Land Power 2018. Adelaide, AUS, 2018: 1-13.
[4]DRIEL C A, STRAATHOF M, LINGEN J V.Developments in additive manufacturing of energetic materials at TNO[C]// The 30th International Symposium on Ballistics. Long Beach, CA,US, 2017: 11-15.
[5]LINGEN J V, STRAATHOF M, DRIEL C V, et al. 3D printing of Gun propellants[C]//43th International Pyrotechnics Seminar. Fort Collins,CO,US,2018:129-136.
[6]CHANDRU R A,BALASUBRAMANIAN N, OOMMEN C, et al. Additive manufacturing of solid rocket propellant grains[J]. Journal of Propulsion & Power,2018,34(4):1090-1093.
[7]MCCLAIN M S, GUNDUZ I E, SON S F. Additive manufacturing of ammonium perchlorate composite propellant with high solids loadings[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3135-3142.
[8]王景龙. 3DP炸药油墨配方设计及制备技术[D]. 太原: 中北大学,2015.
WANG J L. 3DP explosive ink formulation and preparation technology[D]. Taiyuan: North University of China,2015.
[9]邢宗仁. 含能材料三维打印快速成形技术研究[D]. 南京: 南京理工大学,2012.
XING Z R. Research of three-dimensional printing for energetic materials[D]. Nanjing: Nanjing University of Science & Technology,2012.
[10]陈永进. 光固化3D打印异型含能药柱及性能研究[D]. 沈阳: 沈阳理工大学,2020.
CHEN Y J. Study on 3D-printed shaped energetic grain and its properties [D]. Shenyang: Shenyang Ligong University,2020.
[11]王泽山.含能材料概论[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006: 1-11.
[12]李凤生.特种超细粉体制备技术及应用[M].北京:国防工业出版社, 2002: 1-9.
[13]李凤生.固体推进剂技术及纳米材料的应用[M].北京:国防工业出版社, 2008: 12-97.
[14]彭网大,翁武军,曹传新,等.高氯酸铵比表面积对推进剂热稳定性的影响[J]. 火炸药,1996(4): 6-8.

相似文献/References:

[1]邓国栋,刘宏英,索莹,等.Al/SiO2复合粒子制备及其催化性能研究[J].爆破器材,2009,38(04):8.
 DENG Guodong,LIU Hongying,SUO Ying,et al.Study on Preparation and Its Catalysis of Composite Particles Al/SiO2[J].EXPLOSIVE MATERIALS,2009,38(04):8.
[2]施金秋①,邓国栋①,朱陈森①,等.降低超细高氯酸铵感度的方法研究[J].爆破器材,2014,43(03):9.[doi:10.3969/j.issn.1001-8352.2014.03.003]
 SHI Jinqiu,DENG Guodong,ZHU Chensen,et al.Study on the Method of Reducing the Sensitivity of Ammonium Perchlorate Superfine Powder[J].EXPLOSIVE MATERIALS,2014,43(04):9.[doi:10.3969/j.issn.1001-8352.2014.03.003]
[3]夏良洪①,谭柳①,徐森①②,等.粒径对硝酸铵爆炸特性的影响[J].爆破器材,2015,44(02):32.[doi:10.3969/j.issn.1001-8352.2015.02.008]
 XIA Lianghong,TAN Liu,XU Sen,et al.Effects of Particle Size on the Explosibility of Ammonium Nitrate[J].EXPLOSIVE MATERIALS,2015,44(04):32.[doi:10.3969/j.issn.1001-8352.2015.02.008]
[4]周天泓,刘飞翔,花肖航,等.F2604/AP复合物制备及性能研究[J].爆破器材,2017,46(06):21.[doi:10.3969/j.issn.1001-8352.2017.06.005]
 ZHOU Tianhong,LIU Feixiang,HUA Xiaohang,et al.Preparation and Properties of the F2604/AP Composite[J].EXPLOSIVE MATERIALS,2017,46(04):21.[doi:10.3969/j.issn.1001-8352.2017.06.005]
[5]石腾飞①,陈明华②,葛强②,等.RDX/Al/AP/HTPB炸药回收过程中AP提取工艺的响应面法优化[J].爆破器材,2018,47(01):54.[doi:10.3969/j.issn.1001-8352.2018.01.010]
 SHI Tengfei,CHEN Minghua,GE Qiang,et al.Optimization of AP Extraction Process by Response Surface Method in Recovery of the RDX/Al/AP/HTPB Explosive[J].EXPLOSIVE MATERIALS,2018,47(04):54.[doi:10.3969/j.issn.1001-8352.2018.01.010]
[6]饶谱文①,卫延安①,武洪增②,等.膨化高氯酸铵的制备及其性能研究[J].爆破器材,2021,50(01):10.[doi:10.3969/j.issn.1001-8352.2021.01.002]
 RAO Puwen,WEI Yanan,WU Hongzeng,et al.Preparation and Performance of Expanded Ammonium Perchlorate[J].EXPLOSIVE MATERIALS,2021,50(04):10.[doi:10.3969/j.issn.1001-8352.2021.01.002]
[7]王慧中①,肖乐勤①,菅晓霞①,等.纳米金刚石负载Fe2O3的制备及其对高氯酸氨的热分解催化作用[J].爆破器材,2021,50(03):23.[doi:10.3969/j.issn.1001-8352.2021.03.005]
 WANG Huizhong,XIAO Leqin,JIAN Xiaoxia,et al.Preparation of Fe2O3/Nanodiamond Composite Particle and Its Catalytic Effect on Thermal Decomposition of Ammonium Perchlorate[J].EXPLOSIVE MATERIALS,2021,50(04):23.[doi:10.3969/j.issn.1001-8352.2021.03.005]
[8]张云,赵懿明,谭迎新,等.粒径对煤粉云最低着火温度特性的影响[J].爆破器材,2021,50(06):37.[doi:10.3969/j.issn.1001-8352.2021.06.006]
 ZHANG Yun,ZHAO Yiming,TAN Yingxin,et al.Influence of Particle Size on Minimum Ignition Temperature Characteristics of Coal Dust Cloud[J].EXPLOSIVE MATERIALS,2021,50(04):37.[doi:10.3969/j.issn.1001-8352.2021.06.006]
[9]罗西,刘红妮,周文静,等.重结晶对PYX热性能和机械感度的影响[J].爆破器材,2022,51(03):38.[doi:10.3969/j.issn.1001-8352.2022.03.007]
 LUO Xi,LIU Hongni,ZHOU Wenjing,et al.Influence of Recrystallization on Thermal Properties and Mechanical Sensitivity of PYX[J].EXPLOSIVE MATERIALS,2022,51(04):38.[doi:10.3969/j.issn.1001-8352.2022.03.007]

备注/Memo

备注/Memo:
收稿日期:2021-04-08
第一作者:霸书红(1970-),男,博士,教授,主要从事新型含能材料及光电对抗效应研究。E-mail:shuhongba@163.com
更新日期/Last Update: 2021-07-08