[1]SOLLOTT G P, ALSTER J, GILBERT E E, et al. Research towards novel energetic materials [J]. Journal of Energetic Materials, 1986, 4(1/2/3/4): 5-28.
[2]郑剑, 侯林法, 杨仲雄. 高能固体推进剂技术回顾与展望[J]. 固体火箭技术,2001, 24(1): 38-34.
ZHENG J, HOU L F, YANG Z X. The progress and prospect of high energy propellants [J]. Journal of Solid Rocket Technology, 2001, 24(1): 28-34.
[3]肖鹤鸣. 高能化合物的结构和性质[M]. 北京:国防工业出版社,2004.
XIAO H M. Structures and properties of energetic compounds [M]. Beijing: National Defense Industry Press, 2004.
[4]欧育湘,刘进全. 高能量密度化合物[M]. 北京:国防工业出版社,2005.
OU Y X, LIU J Q. High energy density compounds [M]. Beijing: National Defense Industry Press, 2005.?
[5]KAMLET M J, JACOBS S J. Chemistry of detonations. I. A simple method for calculating detonation properties of C—H—N—O explosives [J]. The Journal of Chemical Physics, 1968, 48(1): 23-35.
[6]QIU L, XIAO H M, GONG X D, et al. Crystal density predictions for nitramines based on quantum chemistry [J]. Journal of Hazardous Materials, 2007, 141(1): 280-288.
[7]WANG G X, GONG X D, LIU Y, et al. Prediction of crystalline densities of polynitro arenes for estimation of their detonation performance based on quantum chemistry [J]. Journal of Molecular Structure: THEOCHEM, 2010, 953(1/2/3): 163-169.
[8]朱卫华, 王桂香, 贡雪东, 等. 高能化合物的分子设计[M]. 北京:科学出版社,2014.
[9]WANG G X, XU Y M, XUE C, et al. Prediction of the crystalline densities of aliphatic nitrates by quantum chemistry methods [J]. Central European Journal of EnergeticMaterials, 2019, 16(3): 412-432.
[10]WANG G X, ZHANG W J, LIU Y, et al. A method suitable for predicting the crystal densities of cyclic organic fluorides [J]. Chemistry Select, 2020, 5(6): 1837-1845.
[11]LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Physical Review B: Condensed Matter and Materials Physics, 1988, 37(2): 785-789.
[12]BECKE A D. Density-functional thermochemistry. II. The effect of the Perdew-Wang generalized-gradient correlation correction [J]. The Journal of Chemical Physics, 1992, 97(12): 9173-9177.
[13]BECKE A D. Density-functional thermochemistry. III. The role of exact exchange [J]. Journal of Chemical Physics, 1993, 98(7): 5648-5652.
[14]PERDEW J P. Electronic structure of solids [M]. Berlin, DE: Academic Press, 1991: 11.
[15]ZHAO Y, TRUHLAR D G. The Mo6 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four Mo6-class functionals and 12 other functionals [J]. Theoretical Chemistry Accounts, 2008, 120: 215-241.
[16]BINKLEY J S, POPLE J A, HEHRE W J. Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements [J]. Journal of the American Chemical Society, 1980, 102(3): 939-947.
[17]RASSOLOV V A, RATNER M A, POPLE J A, et al. 6-31G* basis set for third-row atoms [J]. Journal of Computational Chemistry, 2001, 22(9): 976-984.
[18]HARIHARAN P C, POPLE J A. The influence of polarization functions on molecular orbital hydrogenation energies [J]. Theoretica Chimica Acta, 1973, 28: 213-222.
[19]PETERSSON G A, AL-LAHAM M A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms [J]. The Journal of Chemical Physics, 1991, 94(9): 6081-6090.
[20]MCLEAN A D, CHANDLER G S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms. Z=11-18 [J]. The Journal of Chemical Physics, 1980, 72(10): 5639-5648.
[21]JASYS V J, LOMBARDO F, APPLETON T A, et al. Preparation of fluoroadamantane acids and amines: impact of bridgehead fluorine substitution on the solution-and solid-state properties of functionalized adamantanes [J]. Journal of the American Chemical Society, 2000, 122(3): 466-473.
[22]PROZOROVSKII A E, TAFEENKO V A, RIBAKOV V B, et al. Crystal and molecular structure of 2,6-di(1adamantyl) anthracene [J]. Journal of Structural Chemistry, 1987, 28(1): 165-168.
[23]GILARDI R, GEORGE C, FLIPPEN-ANDERSON J L, et al. Structure of 1-amino-3,5,7trinitroadamantane [J]. ChemInform, 1991,22(51).
[24]DAVE P R, FERRARO M, AMMON H L, et al. Synthesis of 2,2,4,4-tetranitroadamantane [J]. The Journal of Organic Chemistry, 1990, 55(14): 4459-4461.
[25]DAVE P R, BRACUTI A, AXENROD T, et al. The synthesis and complete 1H and 13C NMR spectral assignment of 2,2,4,4,6,6-hexanitroadamantane and its precursor nitroketones by 2D NMR spectroscopy [J]. Tetrahedron, 1992, 48(28): 5839-5846.
[26]GEORGE C, GILARDI R. Structure of 2-bromo-2-nitroadamantane (I), C10H14BrNO2, and 2,2-dinitroadamantane (II), C10H14N2O4 [J]. Acta Crystallographica: Section C, 1983, 39: 1674-1676.
[27]POLITZER P, MARTINEZ-ARAYA J I, MURRAY J, et al. An electrostatic interaction correction for improved crystal density prediction [J]. Molecular Physics, 2009, 107(19): 2095-2101.
[28]LIU H, WANG F, WANG G X, et al. Theoretical studies of —NH2 and —NO2 substituted dipyridines [J]. Journal of Molecular Modeling, 2012, 18(10): 4639-4647.
[29]NIRWAN A, DEVI A, GHULE V D. Assessment of density prediction methods based on molecular surface electrostatic potential [J]. Journal of Molecular Modeling, 2018, 24(7):166-177.
[30]许晓娟, 肖鹤鸣, 居学海, 等. 多硝基金刚烷红外光谱和热力学性质的理论研究[J]. 含能材料, 2005, 13(1): 40-44.
XU X J, XIAO H M, JU X H, et al. Theoretical study on the vibrational spectra, thermodynamic properties for polynitroadamantanes [J]. Energetic Materials, 2005, 13(1): 40-44.
[31]肖鹤鸣, 许晓娟, 邱玲. 高能量密度材料的理论设计[M]. 北京:科学出版社, 2008.