[1]徐逸敏①,高贫②,王桂香①.金刚烷衍生物的晶体密度预测方法筛选[J].爆破器材,2021,50(04):8-12.[doi:10.3969/j.issn.1001-8352.2021.04.002]
 XU Yimin,GAO Pin,WANG Guixiang.Screening of Crystal Density Prediction Methods for Adamantine Derivatives[J].EXPLOSIVE MATERIALS,2021,50(04):8-12.[doi:10.3969/j.issn.1001-8352.2021.04.002]
点击复制

金刚烷衍生物的晶体密度预测方法筛选()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
50
期数:
2021年04
页码:
8-12
栏目:
基础理论
出版日期:
2021-07-07

文章信息/Info

Title:
Screening of Crystal Density Prediction Methods for Adamantine Derivatives
文章编号:
5553
作者:
徐逸敏高贫王桂香
①南京理工大学化学与化工学院 (江苏南京,210094)
②国家民用爆破器材质量监督检验中心 (江苏南京,210094)
Author(s):
XU Yimin GAO Pin WANG Guixiang
① School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
② China National Quality Supervision Testing Center for Industrial Explosive Materials (Jiangsu Nanjing, 210094)
关键词:
金刚烷衍生物晶体密度预测密度泛函理论
Keywords:
adamantane derivatives crystal density prediction density functional theory
分类号:
TQ560.7
DOI:
10.3969/j.issn.1001-8352.2021.04.002
文献标志码:
A
摘要:
金刚烷类化合物稳定性高、密度大,是高能量密度化合物(HEDC)的理想目标物。采用密度泛函理论(B3LYP、M06-2X和B3PW91)结合5种基组(6-31G、6-31G*、6-31G**、6-311G*和6-31+G**),对15种已知实验密度ρe的金刚烷类化合物进行研究,以探寻适用于预测新型金刚烷类化合物晶体密度的方法。通过Monte-Carlo统计方法求得分子平均摩尔体积V,得到理论密度ρc,并与ρe相比较发现:3种密度泛函理论方法结合5种基组的平均绝对偏差均较小(0.04~0.07 g/cm3);且ρcρe存在良好的线性关系,相关系数均大于0.98,标准偏差均小于0.05。建议使用M06-2X/6-31G*方法快速、准确地预测金刚烷类化合物的晶体密度。
Abstract:
Adamantine compounds are good targets for high energy density compounds (HEDC) due to their high stability and density. Three density functional theory methods (B3LYP, M06-2X and B3PW91) and five basis sets (6-31G, 6-31G*, 6-31G**, 6-311G* and 6-31+G**) were used to study 15 adamantine compounds which have experimental densities ρe, in order to find a suitable method to predict the crystal density of new adamantine compounds. Monte-Carlo statistical method was used to obtain the molecular molar volumes V?and theoretical densities ρc are obtained. Compared with ρe, it is found that the average absolute deviations of the three methods with five basis sets are small (0.04-0.07 g/cm3). Good linear relationships between ρc and ρe were found with the correlation coefficients being all larger than 0.98 and the standard deviations being all less than 0.05. M06-2X/6-31G*, a fast and accurate method, is recommended for predicting the crystal densities of adamantine compounds.

参考文献/References:

[1]SOLLOTT G P, ALSTER J, GILBERT E E, et al. Research towards novel energetic materials [J]. Journal of Energetic Materials, 1986, 4(1/2/3/4): 5-28.
[2]郑剑, 侯林法, 杨仲雄. 高能固体推进剂技术回顾与展望[J]. 固体火箭技术,2001, 24(1): 38-34.
ZHENG J, HOU L F, YANG Z X. The progress and prospect of high energy propellants [J]. Journal of Solid Rocket Technology, 2001, 24(1): 28-34.
[3]肖鹤鸣. 高能化合物的结构和性质[M]. 北京:国防工业出版社,2004.
XIAO H M. Structures and properties of energetic compounds [M]. Beijing: National Defense Industry Press, 2004.
[4]欧育湘,刘进全. 高能量密度化合物[M]. 北京:国防工业出版社,2005.
OU Y X, LIU J Q. High energy density compounds [M]. Beijing: National Defense Industry Press, 2005.?
[5]KAMLET M J, JACOBS S J. Chemistry of detonations. I. A simple method for calculating detonation properties of C—H—N—O explosives [J]. The Journal of Chemical Physics, 1968, 48(1): 23-35.
[6]QIU L, XIAO H M, GONG X D, et al. Crystal density predictions for nitramines based on quantum chemistry [J]. Journal of Hazardous Materials, 2007, 141(1): 280-288.
[7]WANG G X, GONG X D, LIU Y, et al. Prediction of crystalline densities of polynitro arenes for estimation of their detonation performance based on quantum chemistry [J]. Journal of Molecular Structure: THEOCHEM, 2010, 953(1/2/3): 163-169.
[8]朱卫华, 王桂香, 贡雪东, 等. 高能化合物的分子设计[M]. 北京:科学出版社,2014.
[9]WANG G X, XU Y M, XUE C, et al. Prediction of the crystalline densities of aliphatic nitrates by quantum chemistry methods [J]. Central European Journal of EnergeticMaterials, 2019, 16(3): 412-432.
[10]WANG G X, ZHANG W J, LIU Y, et al. A method suitable for predicting the crystal densities of cyclic organic fluorides [J]. Chemistry Select, 2020, 5(6): 1837-1845.
[11]LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Physical Review B: Condensed Matter and Materials Physics, 1988, 37(2): 785-789.
[12]BECKE A D. Density-functional thermochemistry. II. The effect of the Perdew-Wang generalized-gradient correlation correction [J]. The Journal of Chemical Physics, 1992, 97(12): 9173-9177.
[13]BECKE A D. Density-functional thermochemistry. III. The role of exact exchange [J]. Journal of Chemical Physics, 1993, 98(7): 5648-5652.
[14]PERDEW J P. Electronic structure of solids [M]. Berlin, DE: Academic Press, 1991: 11.
[15]ZHAO Y, TRUHLAR D G. The Mo6 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four Mo6-class functionals and 12 other functionals [J]. Theoretical Chemistry Accounts, 2008, 120: 215-241.
[16]BINKLEY J S, POPLE J A, HEHRE W J. Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements [J]. Journal of the American Chemical Society, 1980, 102(3): 939-947.
[17]RASSOLOV V A, RATNER M A, POPLE J A, et al. 6-31G* basis set for third-row atoms [J]. Journal of Computational Chemistry, 2001, 22(9): 976-984.
[18]HARIHARAN P C, POPLE J A. The influence of polarization functions on molecular orbital hydrogenation energies [J]. Theoretica Chimica Acta, 1973, 28: 213-222.
[19]PETERSSON G A, AL-LAHAM M A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms [J]. The Journal of Chemical Physics, 1991, 94(9): 6081-6090.
[20]MCLEAN A D, CHANDLER G S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms. Z=11-18 [J]. The Journal of Chemical Physics, 1980, 72(10): 5639-5648.
[21]JASYS V J, LOMBARDO F, APPLETON T A, et al. Preparation of fluoroadamantane acids and amines: impact of bridgehead fluorine substitution on the solution-and solid-state properties of functionalized adamantanes [J]. Journal of the American Chemical Society, 2000, 122(3): 466-473.
[22]PROZOROVSKII A E, TAFEENKO V A, RIBAKOV V B, et al. Crystal and molecular structure of 2,6-di(1adamantyl) anthracene [J]. Journal of Structural Chemistry, 1987, 28(1): 165-168.
[23]GILARDI R, GEORGE C, FLIPPEN-ANDERSON J L, et al. Structure of 1-amino-3,5,7trinitroadamantane [J]. ChemInform, 1991,22(51).
[24]DAVE P R, FERRARO M, AMMON H L, et al. Synthesis of 2,2,4,4-tetranitroadamantane [J]. The Journal of Organic Chemistry, 1990, 55(14): 4459-4461.
[25]DAVE P R, BRACUTI A, AXENROD T, et al. The synthesis and complete 1H and 13C NMR spectral assignment of 2,2,4,4,6,6-hexanitroadamantane and its precursor nitroketones by 2D NMR spectroscopy [J]. Tetrahedron, 1992, 48(28): 5839-5846.
[26]GEORGE C, GILARDI R. Structure of 2-bromo-2-nitroadamantane (I), C10H14BrNO2, and 2,2-dinitroadamantane (II), C10H14N2O4 [J]. Acta Crystallographica: Section C, 1983, 39: 1674-1676.
[27]POLITZER P, MARTINEZ-ARAYA J I, MURRAY J, et al. An electrostatic interaction correction for improved crystal density prediction [J]. Molecular Physics, 2009, 107(19): 2095-2101.
[28]LIU H, WANG F, WANG G X, et al. Theoretical studies of —NH2 and —NO2 substituted dipyridines [J]. Journal of Molecular Modeling, 2012, 18(10): 4639-4647.
[29]NIRWAN A, DEVI A, GHULE V D. Assessment of density prediction methods based on molecular surface electrostatic potential [J]. Journal of Molecular Modeling, 2018, 24(7):166-177.
[30]许晓娟, 肖鹤鸣, 居学海, 等. 多硝基金刚烷红外光谱和热力学性质的理论研究[J]. 含能材料, 2005, 13(1): 40-44.
XU X J, XIAO H M, JU X H, et al. Theoretical study on the vibrational spectra, thermodynamic properties for polynitroadamantanes [J]. Energetic Materials, 2005, 13(1): 40-44.
[31]肖鹤鸣, 许晓娟, 邱玲. 高能量密度材料的理论设计[M]. 北京:科学出版社, 2008.

备注/Memo

备注/Memo:
收稿日期:2020-12-14
第一作者:徐逸敏(1996-),男,硕士,主要从事有机含能化合物的理论研究。E-mail:1476424181@qq.com
通信作者:王桂香(1978-),女,副教授,主要从事含能材料的理论计算研究。E-mail: wanggx1028@163.com
更新日期/Last Update: 2021-07-07