[1]陈淼,徐明辉,刘宁,等.含能热塑性黏合剂的研究进展[J].爆破器材,2020,49(06):1-8,14.[doi:10.3969/j.issn.1001-8352.2020.06.001]
 CHEN Miao,XU Minghui,LIU Ning,et al.Research Progress of Energetic Thermoplastic Binders[J].EXPLOSIVE MATERIALS,2020,49(06):1-8,14.[doi:10.3969/j.issn.1001-8352.2020.06.001]
点击复制

含能热塑性黏合剂的研究进展()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
49
期数:
2020年06
页码:
1-8,14
栏目:
基础理论
出版日期:
2020-12-02

文章信息/Info

Title:
Research Progress of Energetic Thermoplastic Binders
文章编号:
5456
作者:
陈淼徐明辉刘宁莫洪昌卢先明
西安近代化学研究所(陕西西安,710065)
Author(s):
CHEN Miao XU Minghui LIU Ning MO Hongchang LU Xianming
Xi’an Modern Chemistry Research Institute (Shaanxi Xi’an, 710065)
关键词:
含能热塑性弹性体黏合剂合成性能
Keywords:
energetic thermoplastic elastomer binder synthesis property
分类号:
TQ560
DOI:
10.3969/j.issn.1001-8352.2020.06.001
文献标志码:
A
摘要:
含能热塑性黏合剂主要是指聚合物分子结构中含有能量基团的热塑性弹性体,兼具高能和热塑性弹性体特性。从含能热塑性黏合剂的结构和性能出发,重点综述了近年来GAP、AMMO、BAMO、PNIMMO、PGN基含能热塑性弹性体(ETPE)以及二氟氨基含能黏合剂的合成及其性能研究,展望了ETPE的发展趋势。
Abstract:
Energetic thermoplastic binders mainly refer to as thermoplastic elastomers having energetic groups in their molecular structure, which possess properties of both high energy and thermoplastic elastomers. Recent progresses in the syntheses and properties of GAP based, AMMO based, BAMO based, PNIMMO based, PGN based energetic thermoplastic elastomers and difluoroamino binders were mainly reviewed in view of the structure and performance of energetic thermoplastic binders. Finally, the trends in the development of energetic thermoplastic elastomers were prospected.

参考文献/References:

[1]BADGUJAR D M, TALAWAR M B, ZARKO V E, et al. New directions in the area of modern energetic polymers: An overview[J]. Combustion, Explosion, and Shock Waves, 2017, 53: 371-387.

[2]BODAGHI A, SHAHIDZADEH M. Synthesis and characterization of new PGN based reactive oligomeric plasticizers for glycidyl azide polymer[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(4): 364-370.
[3]CHENG T. Review of novel energetic polymers and binders-high energy propellant ingredients for the new space race[J]. Designed Monomers and Polymers, 2019, 22(1): 54-65.
[4] MILLER R S.Research on new energetic materials[C]//MRS Symposium Proceedings.Boston, MA, US, 1996, 418: 3-14.
[5]罗运军, 葛震. 含能黏合剂合成研究新进展[J]. 火炸药学报, 2011, 34(2): 1-5.
LUO Y J, GE Z. New research progress in the synthesis of energetic binders[J]. Chinese Journal of Explosives & Propellants, 2011, 34(2): 1-5.
[6]BADGUJAR D M, TALAWAR M B, ASTHANA S N, et al. Advances in science and technology of modern energetic materials:An overview[J]. Journal of Hazardous Materials, 2008, 151(2/3): 289-305.
[7]AMPLEMAN G , BROUSSEAU P , THIBOUTOT S, et al. Evaluation of GIM as a greener insensitive melt-cast explosives[J]. International Journal of Energetic Materials & Chemical Propulsion, 2012, 11(1):59-87.
[8]SIKDER A K,REDDY S.Review on energetic thermoplastic elastomers (ETPEs) for military science[J].Propellants,Explosives,Pyrotechnics,2013,38(1):14-28.
[9]DRODGE D R, WILLIAMSON D M. Understanding damage in polymer-bonded explosive composites[J]. Journal of Materials Science, 2016, 51: 668-679.
[10]TALAWAR M B,SIVABALAN R,Mukundan T, et al. Environmentally compatible next generation green energetic materials (GEMs)[J].Journal of Hazardous Materials, 2009, 161(2/3): 589-607.
[11]SANGHAVI R R, ASTHANA S N, Singh H. Thermoplastic elastomers (TPEs) as binders for futuristic propellants and explosives: A review[J]. Journal of Polymer Materials, 2000, 17(3): 221-232.
[12]BADGUJAR D M, TALAWAR M B, MAHULIKAR P P. Review of promising insensitive energetic materials[J]. Central European Journal of Energetic Materials, 2017, 14(4): 821-843.
[13]JEONG J Y, SONG J K, KIM Y G, et al. Study on the formation of an energetic thermoplastic propellant (Ⅰ) [J]. Journal of the Korean Society of Propulsion Engineers, 2019, 23(1): 71-78.
[14]LIM M, JANG Y, KIM H, et al. Synthesis and characterization of alkoxy and alkylamino GAP copolymer for energetic thermoplastic elastomer (ETPE) [J]. Applied Chemistry for Engineering, 2019, 30(1): 81-87.
[15]DIAZ E, BROUSSEAU P, AMPLEMAN G, et al. Heats of combustion and formation of new energetic thermoplastic elastomers based on GAP, Poly NIMMO and Poly GLYN[J]. Propellants, Explosives, Pyrotechnics, 2003, 28(3): 101-106.
[16]左海丽. GAP基含能热塑性弹性体研究[D]. 南京: 南京理工大学,2011.
ZUO H L. Study on thermoplastic elastomers for gun propellant[D]. Nanjing: Nanjing University of Science and Technology, 2011.
[17]左海丽, 肖乐勤, 菅晓霞, 等. GAP/MDI/DEG含能热塑性弹性体的合成与性能[J]. 高分子材料科学与工程, 2010, 26(12): 20-23.
ZUO H L, XIAO L Q, JIAN X X, et al. Synthesis and properties of GAP/MDI/DEG energetic thermoplastic elastomer[J]. Polymer Materials Science and Engineering, 2010, 26(12): 20-23.
[18]YOU J S, NOH S T. Thermal and mechanical properties of poly(glycidyl azide)/polycaprolactone copolyol-based energetic thermoplastic polyurethanes[J]. Macromolecular Research, 2010, 18(11): 1081-1087.
[19]YOU J S, NOH S T. Rheological and thermal properties of glycidyl azide polyol-based energetic thermoplastic polyurethane elastomers[J]. Polymer International, 2013, 62(2): 158-164.
[20]胡义文, 邓敏, 周伟良, 等. GAP-PCL含能热塑性弹性体的合成及力学性能[J]. 固体火箭技术, 2016, 39(4): 492-496.
HU Y W,DENG M,ZHOU W L, et al. Synthesis and mechanical properties of energetic thermoplastic elastomers based on glycidyl azide polymer and polycaprolactone[J]. Journal of Solid Rocket Technology, 2016, 39(4): 492-496.
[21]HU Y W, JIAN X X, XIAO L Q, et al. Microphase separation and mechanical performance of thermoplastic elastomers based on poly(glycidyl azide)/poly(oxytetramethylene glycol) [J]. Polymer Engineering and Science, 2018, 58(S1): 167-173.
[22]ZHANG Z J, WANG G, WANG Z, et al. Synthesis and characterization of novel energetic thermoplastic elastomers based on glycidyl azide polymer (GAP) with bonding functions[J]. Polymer Bulletin, 2015, 72(8): 1835-1847.
[23]ZHANG Z J, LUO N, DENG J K, et al. A kind of bonding functional energetic thermoplastic elastomers based on glycidyl azide polymer[J]. Journal of Elastomers & Plastics, 2016, 48(8): 728-738.
[24]ZHANG Y, ZHAO J, YANG P, et al. Synthesis and characterization of energetic GAP-b-PAEMA block copolymer[J]. Polymer Engineering and Science, 2012, 52(4): 768-773.
[25]胡中波, 甘孝贤. 以取代氧丁环为母体制备含能黏合剂[J] . 含能材料, 2004, 12(1): 62-64.
HU Z B, GAN X X. Synthesis of energetic binders form substituted oxetanes[J]. Chinese Journal of Energetic Materials, 2004,12(1): 62-64.
[26]徐明辉,卢先明,莫洪昌,等.无规嵌段型含氟PAMMO基热塑性弹性体的合成与表征[J]. 含能材料, 2017,25(8): 651-655.
XU M H, LU X M, MO H C, et al. Synthesis and characterization of random block fluorine-containing PAMMO based thermoplastic elastomers[J]. Chinese Journal of Energetic Materials, 2017,25(8): 651-655.
[27]莫洪昌, 张志刚, 卢先明, 等. PAMMO基热塑性弹性体的合成及表征[J]. 化学推进剂与高分子材料, 2014,12(4) : 59-61,65.
MO H C, ZHANG Z G, LU X M, et al. Synthesis and characterization of PAMMO-based thermoplastic elastomers[J]. Chemical Propellants & Polymeric Materials, 2014,12(4): 59-61,65.
[28]MUKHAMETSHIN T I, SHARIPOV R I, PETROV V A, et al. Energy-intensive random block copolymers of 3,3-bis(nitratomethyl) oxetane and 3-azidomethyl-3-methyloxetane [J]. Propellants, Explosives, Pyrotechnics, 2018, 43(11): 1115-1121.
[29]胡义文, 菅晓霞, 肖乐勤, 等. 一步法制备BAMO-THF型热塑性弹性体及其力学特性[J]. 固体火箭技术, 2017, 40(3): 330-335.
HU Y W, JIAN X X, XIAO L Q, et al. Onestep preparation and mechanical properties of thermoplastic elastomer based on BAMO-THF[J]. Journal of Solid Rocket Technology, 2017, 40(3) : 330-335.
[30]SANDERSON A J, WAYNE E, CANNIZZO F L, et al. Synthesis of energetic thermoplastic elastomers containing both polyoxirane and polyoxetane blocks: US 2009/0088506A1[P]. 2009-04-02.
[31]王建峰,黄振亚,侯果文.BAMOGAP基ETPE的合成与性能研究[J].火炸药学报,2016, 39(2):45-49.
WANG J F,HUANG Z Y,HOU G W. Study on synthesis and properties of BAMO-GAP based ETPE[J]. Chinese Journal of Explosives & Propellants, 2016, 39(2): 45-49.
[32]KAWAMOTO A M,OLIVEIRA J I S,REZENDE L C,et al. Synthesis and characterization of energetic thermoplastic elastomers for propellant formulations[J]. Journal of Aerospace Technology and Management, 2009, 1(1): 35-42.
[33]卢先明, 莫洪昌, 李建康, 等. PBAMO/GAP基ABA型ETPE的偶联法合成研究[J]. 含能材料, 2012, 20(3): 380-381.
[34]REDDY T S, NAIR J K, SATPUTE R S, et al. Rheological studies on energetic thermoplastic elastomers[J]. Journal of Applied Polymer Science, 2010, 118(4): 2365-2368.
[35]ZHANG C, LI J, LUO Y J. Synthesis and characterization of 3,3bisazidomethyl oxetane-3-azidomethyl-3methyl oxetane alternative block energetic thermoplastic elastomer[J]. Propellants, Explosives, Pyrotechnics, 2012, 37(2): 235-240.
[36]张弛, 李杰, 罗运军, 等.交替嵌段型BAMO-AMMO热塑性弹性体的性能[J]. 高分子材料科学与工程, 2014, 30(1): 62-65.
ZHANG C, LI J, LUO Y J, et al. Property of BAMO-AMMO alternative block thermoplastic elastomer[J]. Polymer Materials Science and Engineering, 2014, 30(1): 62-65.
[37]张志刚, 卢先明, 莫洪昌, 等. PBAMO/TGAP基AnB星型ETPE的合成与性能研究[J]. 含能材料, 2013, 21(5): 691-692.
[38]卢先明, 莫洪昌, 丁峰, 等. PBAMO/APP基星型含能热塑性弹性体的合成与应用[J]. 含能材料, 2016, 24(10): 947- 952.
LU X M,MO H C,DING F,et al.Synthesis and application of PBAMO/APP-based star ETPE[J].Chinese Journal of Energetic Materials,2016,24(10): 947- 952.
[39]PISHARATH S,ANG H G.Synthesis and thermal decomposition of GAP-poly(BAMO) copolymer[J].Polymer Degradation and Stability,2007,92(7):1365-1377.
[40]PEI J F, ZHAO F Q, SONG X D, et al. Effects of nano-CuO particles on thermal decomposition behavior and decomposition mechanism of BAMO-GAP copolymer[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 88-93.
[41]JAYAKUMAR K K, REDDY T S, NAIR J K, et al. Development of green thermoplastic binder: chain extended poly bis (azido methyl) oxetane[J]. Journal of Polymer Materials, 2007, 24(1): 7-12.
[42]卢先明,甘宁,邢颖,等.高能热塑性粘合剂CEPBAMO的合成[J].含能材料,2010,18(3):261-265.
LU X M,GAN N,XING Y,et al. Synthesis of high energy thermoplastic binder CE-PBAMO[J]. Chinese Journal of Energetic Materials, 2010, 18(3): 261-265.
[43]莫洪昌, 卢先明, 栗磊, 等. PNIMMO基热塑性弹性体的合成及表征[J]. 含能材料, 2015, 23(7): 629-632.
MO H C, LU X M, LI L, et al. Synthesis and characterization of ETPE based on PNIMMO[J]. Chinese Journal of Energetic Materials, 2015, 23(7): 629-632.
[44]XU M H, LU X M, MO H C, et al. Studies on PBFMO-b-PNMMO alternative block thermoplastic elastomers as potential binders for solid propellants[J]. RSC Advances, 2019, 9: 29765-29771.
[45]ZHANG Z J, LUO N, WANG Z, et al. Polyglycidyl nitrate (PGN)-based energetic thermoplastic polyurethane elastomers with bonding functions(I.)[J]. Journal of Applied Polymer Science, 2015, 132(23): 42026.
[46]RUFF O, GIESE M. Die fluorierung des silbercyanids [J]. Berichte der Deutschen Chemischen Gesellschaft: A and B series, 1936, 69(3): 598-603.
[47]张明权, 周集义, 高宝柱. 二氟氨基含能黏合剂合成研究进展[C] // 中国宇航学会固体火箭推进第22届年会论文集:推进剂分册. 成都, 2005: 23-29.
[48]ARCHIBALD T G, MANSER G E, IMMOOSE J E. Difluoroamino oxetanes and polymers formed thereform for use in energetic formulations: US 5272249 [P].1993-12-21.
[49]李欢. 二氟氨基类含能粘合剂的合成及性能研究[D]. 南京: 南京理工大学,2015.
LI H. Study on synthesis and properties of difluoroamino energetic binders[D]. Nanjing: Nanjing University of Science and Technology, 2015.

备注/Memo

备注/Memo:
收稿日期:2020-01-28
基金项目:“十三五”装备预研共用技术和领域基金(61407200202)
第一作者:陈淼(1991-),女,硕士,助理工程师,主要从事含能黏合剂的研究。E-mail:cm9292@163.com
通信作者:卢先明(1969- ),男,硕士,研究员,主要从事含能黏合剂的研究。E-mail:luxianming1220@126.com
更新日期/Last Update: 2020-12-01