[1]蔡永昶,吴文倩,陈利平.硝酸、硫酸对三硝基均苯三酚热分解特性的影响[J].爆破器材,2020,49(06):20-26.[doi:10.3969/j.issn.1001-8352.2020.06.004]
 CAI Yongchang,WU Wenqian,CHEN Liping.Effect of Nitric Acid and Sulfuric Acid on Thermal Decomposition- Characteristics of Trinitrophloroglucinol[J].EXPLOSIVE MATERIALS,2020,49(06):20-26.[doi:10.3969/j.issn.1001-8352.2020.06.004]
点击复制

硝酸、硫酸对三硝基均苯三酚热分解特性的影响()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
49
期数:
2020年06
页码:
20-26
栏目:
基础理论
出版日期:
2020-12-02

文章信息/Info

Title:
Effect of Nitric Acid and Sulfuric Acid on Thermal Decomposition- Characteristics of Trinitrophloroglucinol
文章编号:
5455
作者:
蔡永昶吴文倩陈利平
南京理工大学化工学院(江苏南京,210094)
Author(s):
CAI Yongchang WU Wenqian CHEN Liping
School of Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
三硝基均苯三酚差示扫描量热法无模型法等温TD24
Keywords:
trinitrophloroglucinol (TNPG) DSC model free method isothermal TD24
分类号:
TQ564.3
DOI:
10.3969/j.issn.1001-8352.2020.06.004
文献标志码:
A
摘要:
三硝基均苯三酚(TNPG)在硝化过程中不可避免地会接触到酸根离子。为了探究硝酸、硫酸作用下TNPG的热分解特性,采用差示扫描量热仪(DSC)对合适酸含量的样品在不同升温速率条件下进行测试,并进行动力学分析与预测。DSC测试结果表明,TNPG的起始分解温度为198.35 ℃,硝酸和硫酸都能促进其热分解过程,随着酸含量的增加,起始分解温度降低。无模型法计算得到TNPG的活化能变化范围为97~103 kJ/mol,而酸作用下的TNPG较不稳定,活化能为20~94 kJ/mol(硝酸作用)和135~224 kJ/mol(硫酸作用)。等温预测结果说明,各样品具有自催化分解特性;绝热预测结果表明,每个样品的TD24分别为137.6 ℃(TNPG)、111.3 ℃(硝酸作用)和140.4 ℃(硫酸作用)。若在合成过程中发生热失控,采取控制措施的时间余量较大;需要将物质在阴凉、干燥、无酸根离子的环境中储存,避免外部火灾的发生。
Abstract:
It is inevitable to touch acid ion like nitric and sulfuric during the synthesis of trinitrophloroglucinol (2,4,6-trinitro-1,3,5-benzoquinone, TNPG). In order to investigate the thermal stability of TNPG under the action of nitric acid and sulfuric acid, typical samples with a suitable amount of acid was screened by differential scanning calorimeter (DSC) under various heating rates, and their kinetic parameters were analyzed and calculated. Results show that initial decomposition temperature of TNPG is 198.35 ℃, and its thermal decomposition can be catalyzed by both acid nitric and sulfuric acid. With the increasing of acid amount, initial decomposition temperature could be lower. Activation energy of TNPG calculated with model free method is 97-103 kJ/mol. TNPG under the action of acid is relatively unstable showing activation energy ranges of 20-94 kJ/mol (with nitric acid) and 135-224 kJ/mol (with sulfuric acid), respectively. It can be known from the isothermal prediction results that the decomposition of each sample has autocatalytic decomposition characteristics. The TD24?of each typical sample is predicted to be 137.6 ℃ (TNPG), 111.3 ℃ (with nitric acid) and 140.4 ℃ (with sulfuric acid). It is allowed a longer time to take control once the thermal runaway occurs during the synthesis process. It is necessary to store the material in a cool, dry, and acid-free environment, and be away from external fires.

参考文献/References:

[1]WANG L Q, CHEN H Y, ZHANG T L, et al. Synthesis, characterization, thermal and explosive properties of potassium salts of trinitrophloroglucinol [J]. Journal of Hazardous Materials, 2007, 147(1/2):576-580.

[2]CHEN H Y, ZHANG T L, ZHANG J G, et al. Synthesis, characterization and properties of tri-substitute potassium salt of trinitrophloroglucinol [J]. Chinese Journal of Chemistry, 2007, 25(1):59-62.
[3]MEHILAL M, SIKDER N, SIKDER A K, et al. Studies on 2,4,6-trinitrophloroglucinol (TNPG): A novel flash sensitizer[J]. Indian Journal of Engineering & Materials Sciences, 2004, 11(1):59-62.
[4]EGORSHEV V Y, SINDITSKII V P, ZBARSKY V L,et al. Synthesis and combustion study of metallic salts of trinitrophloroglucinol[C]//International Autumn Seminar on Propellants, Explosives & Pyrotecnics. Guilin, 2003:30-37.
[5]BOWDEN P R, LEONARD P W, LICHTHARDT J P, et al. Energetic salt of trinitrophloroglucinol and melamine[J].AIP Conference Proceedings, 2017,1793: 040014.
[6]SCHMITT M, BOEDEN P, AVILUCEA G, et al. Investigation of energetic salts of trinitrophloroglucinol[C]//APS Shock Compression of Condensed Matter Meeting.St.Louis, MO,US, 2017.
[7]张丽媛,黄靖伦,马卿. 三硝基间苯三酚合成工艺优化及性能研究[C]//全国危险物质与安全应急技术研讨会论文集:上. 重庆, 2011:181-184.
ZHANG L Y, HUANG J L, MA Q. Study of the synthesis technologic optimization and performance of 1,3,5-trihydroxy-2,4,6-trinitrobenzene[C]//Proceedings of National Symposium on Hazardous Substances and Safety Emergency Technology: Part I. Chongqing,2011:181-184.
[8]张丽媛,黄靖伦,马卿. 三硝基间苯三酚制备技术及工艺放大研究[C]//第二届全国危险物质与安全应急技术研讨会论文集.成都,2013: 72-76.
ZHANG L Y, HUANG J L, MA Q. Investigation on preparation technology and process scale-up of TNPG[C]//Proceedings of Second National Symposium on Hazardous Substances and Safety Emergency Technology. Chengdu,2013: 72-76.
[9]陈红艳,张同来,张建国,等.水合三硝基间苯三酚的制备、结构及热分解机理[J]. 火工品, 2005(2):13-17.
CHEN H Y, ZHANG T L, ZHANG J G, et al. The preparation, structures and thermal decomposition mechanisms of trinitrophloroglucinol-hydrate [J]. Initiators and Pyrotechnics, 2005(2):13-17.
[10]BOU-DIAB L, FIERZ H. T5-4-Identification of autocatalytic decompositions by differential scanning calorimetry [C]//Loss Prevention & Safety Promotion in the Process Industries: Proceedings of the 10th International Symposium. Stockholm, Sweden,2001:809-821.
[11]YANG T, CHEN L P, CHEN W H, et al. Thermal stability of 2-ethylhexyl nitrate with acid [J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(1):205-212.
[12]张强,乔小晶,张建国,等.三硝基均苯三酚金属(Li,Na,K,Mg)化合物的快速热分解[J]. 物理化学学报, 2009, 25(6):1081-1087.
ZHANG Q, QIAO X J, ZHANG J G, et al. Rapid thermal decomposition of trinitrophloroglucinol metal (Li, Na, K, Mg) compounds [J]. Acta PhysicoChemica Sinica, 2009, 25(6):1081-1087.
[13]FRIEAMAN H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic [J]. Journal of Polymer Science:Part C, 1964, 6(1):183-195.
[14]弗朗西斯·施特塞尔.化工工艺的热安全:风险评估与工艺设计[M]. 陈网桦, 彭金华, 陈利平,译. 北京: 科学出版社, 2009: 51-60.
[15]STOESSEL D I F. Thermal safety of chemical processes: risk assessment and process design[M]. Berlin: Wiley VCH, 2008: 55-56.
[16]国家安全监管总局要求加强精细化工反应安全风险评估[J]. 化工安全与环境, 2017, 36(4): 2-3.
[17]彭敏君, 路贵斌, 陈网桦, 等. 苯胺溶剂中偶氮二异丁腈热分解特性及动力学[J]. 物理化学学报, 2013, 29(10): 2095-2100.
PENG M J, LU G B, CHEN W H, et al. Thermal decomposition characteristic and kinetics of AIBN in aniline solvent[J]. Acta Physico-Chimica Sinica, 2013, 29(10): 2095-2100.

相似文献/References:

[1]丁玉奎①,吴翼①,王海丹①,等.TNT对RDX热分解行为影响的研究[J].爆破器材,2014,43(05):21.[doi:10.3969/j.issn.1001-8352.2014.05.005]
 DING Yukui,WU Yi,WANG Haidan,et al.Effects of TNT on the Thermal Decomposition Performance of RDX[J].EXPLOSIVE MATERIALS,2014,43(06):21.[doi:10.3969/j.issn.1001-8352.2014.05.005]
[2]马泽文,李席,韩志伟,等.含能增塑剂BDNPF/A与几种高能炸药相容性研究[J].爆破器材,2017,46(06):11.[doi:10.3969/j.issn.1001-8352.2017.06.003]
 MA Zewen,LI Xi,HAN Zhiwei,et al.Compatibility of Energetic Plasticizer BDNPF/A with Some High Explosives[J].EXPLOSIVE MATERIALS,2017,46(06):11.[doi:10.3969/j.issn.1001-8352.2017.06.003]
[3]柯浩民①,银颖②,吴文倩①,等.密闭体系下TATB的热分解动力学与热危害预测[J].爆破器材,2020,49(03):26.[doi:10.3969/j.issn.1001-8352.2020.03.005]
 KE Haomin,YIN Ying,WU Wenqian,et al.Thermal Decomposition Kinetics and Thermal Hazard Prediction of Triaminotrinitrobenzene in Confined System[J].EXPLOSIVE MATERIALS,2020,49(06):26.[doi:10.3969/j.issn.1001-8352.2020.03.005]

备注/Memo

备注/Memo:
收稿日期:2020-03-02
第一作者:蔡永昶(1997-),男,本科生,主要从事物质的热稳定性研究。E-mail:809676349@qq.com
通信作者:吴文倩(1995-),女,博士研究生,主要从事化学反应热失控危险性的研究。E-mail: 1374981824@qq.com
更新日期/Last Update: 2020-12-01