[1]李宏伟,郭婉肖,王茂,等.高速撞击下温压炸药的响应敏感性[J].爆破器材,2020,49(05):7-13.[doi:doi:10.3969/j.issn.1001-8352.2020.05.002]
 LI Hongwei,GUO Wanxiao,WANG Mao,et al.Response Sensitivity of Thermobaric Explosive under High-speed Impact[J].EXPLOSIVE MATERIALS,2020,49(05):7-13.[doi:doi:10.3969/j.issn.1001-8352.2020.05.002]
点击复制

高速撞击下温压炸药的响应敏感性()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
49
期数:
2020年05
页码:
7-13
栏目:
基础理论
出版日期:
2020-10-05

文章信息/Info

Title:
Response Sensitivity of Thermobaric Explosive under High-speed Impact
文章编号:
5423
作者:
李宏伟郭婉肖王茂韩志伟陈坤王伯良
南京理工大学化工学院(江苏南京,210094)
Author(s):
LI Hongwei GUO Wanxiao WANG Mao HAN Zhiwei CHEN Kun WANG Boliang
School of Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
温压炸药高速撞击临界点火速度燃烧特性
Keywords:
thermobaric explosive high-speed impact critical ignition velocity combustion characteristics
分类号:
TQ560.7
DOI:
doi:10.3969/j.issn.1001-8352.2020.05.002
文献标志码:
A
摘要:
采用自行设计的动态加载装置对HMX基、HMX/NTO基和HMX/FOX-7基3种温压炸药撞击响应规律进行了研究,获得炸药的临界点火速度,并通过密闭燃烧罐分析撞击后回收试样的燃烧特性。结果表明:3种温压炸药药柱在高速撞击下均经历了冲击、塑性变形、破碎飞散和点火反应阶段;HMX基、HMX/NTO基和HMX/FOX-7基温压炸药的临界点火速度分别为302.9、312.3 m/s和315.3 m/s,NTO和FOX-7能够提高温压炸药的临界点火速度;分析撞击后回收试样的燃烧特性发现,与HMX基温压炸药相比,HMX/NTO基和HMX/FOX-7基温压炸药升压时间分别增加了103.6%和103.3%,升压速率分别降低了17.3%和21.1%,且撞击后的燃烧速率显著降低。
Abstract:
The impact response laws of three thermobaric explosives, including HMX based, HMX/NTO based and HMX/FOX-7 based, were studied by using a self-designed high-speed impact device. Critical ignition velocity was obtained, and combustion characteristics of the recovered samples after impact were tested by the closed burner tank. The results show that all the three kinds of thermobaric explosives have experienced shock, plastic deformation, fragmentation and ignition reaction stages under high-speed impact conditions. Critical ignition velocity of HMX based thermobaric explosives is 302.9 m/s, and that of HMX/NTO based or HMX/FOX-7 based thermobaric explosives is 312.3 m/s or 315.3 m/s. The addition of insensitive explosives NTO and FOX-7 to the formulation can improve the critical ignition velocity, in which FOX-7 is more effective. Through analyzing combustion characteristics of recovered samples, it is found that compared to HMX-based thermobaric explosives, the pressure rising time of HMX/NTO based and HMX/FOX-7 based thermobaric explosives increase by 103.6% and 103.3% respectively. The pressure rising rate reduce by 17.3% and 21.1% respectively, which can significantly reduce the burning rate of thermobaric explosives after impact.

参考文献/References:

[1]WALLEY S M, FIELD J E, PALMER S J P. Impact sensitivity of propellants[J]. Proceedings: Mathematical and Physical Sciences, 1992, 438(1904): 571-583.

[2]陈鹏, 屈可朋, 陈荣, 等. 落锤加载下反应材料的反应性能[J]. 火炸药学报, 2019, 42(2): 197-201,206.
CHEN P, QU K P, CHEN R, et al. Reactive properties of reactive material under the load of drop-weight[J]. Chinese Journal of Explosives & Propellants, 2019, 42(2): 197-201,206.
[3]BALZER J E, FIELD J E, GIFFORD M J, et al. High-speed photographic study of the drop-weight impact response of ultrafine and conventional PETN and RDX[J]. Combustion & Flame, 2002, 130(4): 298-306.
[4]聂海亮, 石霄鹏, 陈春杨, 等. 单轴双向加载分离式霍普金森压杆的数据处理方法[J]. 爆炸与冲击, 2018, 38(3): 517-524.
NIE H L, SHI X P, CHEN C Y, et al. Data processing method for bidirectional-load split Hopkinson compression bar[J]. Explosion and Shock Waves, 2018, 38(3): 517-524.
[5]代晓淦, 文玉史, 李敬明. Steven试验中含TNT类炸药的响应特性[J]. 火炸药学报, 2011, 34(3): 48-51.
DAI X G, WEN Y S, LI J M. Reaction characteristics for explosive containing TNT in steven test[J]. Chinese Journal of Explosives & Propellants, 2011, 34(3): 48-51.
[6]CHEN X D, LAI J W, CHANG X L, et al. Compressive mechanical properties of HTPB propellant at low temperatures and high strain rates[J]. Results in Physics, 2017, 7: 4079-4084.
[7]HAMDAN S , SWALLOWE G M . The strain-rate and temperature dependence of the mechanical properties of polyetherketone and polyetheretherketone[J]. Journal of Materials Science, 1996, 31: 1415-1423.
[8]吴艳青, 鲍小伟, 王明扬, 等. RDX/HMX颗粒炸药落锤撞击点火-燃烧机理[J]. 爆炸与冲击, 2017, 37(2): 339-346.
WU Y Q, BAO X W, WANG M Y, et al. Ignition and burning mechanisms of RDX/HMX particles subjected to drop-weight impact[J]. Explosion and Shock Waves, 2017, 37(2): 339-346.
[9]陈春燕, 栗保华, 李昆, 等. 冲击加载下PBX的点火特性与力学特性间的关系[J]. 火炸药学报, 2018, 41(4): 369-374.
CHEN C Y, LI B H, LI K, et al. Relationship between ignition characteristics and mechanical properties of PBX under impact loading[J]. Chinese Journal of Explosives & Propellants, 2018, 41(4): 369-374.
[10]尚海林, 杨洁, 赵锋, 等. 低速撞击下HMX颗粒炸药点火燃烧实验研究[J]. 现代应用物理, 2017, 8(2): 021001.
SHANG H L, YANG J, ZHAO F, et al. Experimental research on ignition and burning of HMX granular explosives under low velocity impact[J]. Modern Applied Physics, 2017, 8(2): 021001.
[11]李宇翔, 吴鹏, 花成, 等. 微纳米HMX基PBX力学、导热性能及药片撞击感度[J]. 含能材料, 2018, 26(4): 334-338.
LI Y X, WU P, HUA C, et al. Mechanical, thermal conductive properties and tablet impact sensitivity of micro-nano-HMX based PBX[J]. Chinese Journal of Energetic Materials, 2018, 26(4): 334-338.
[12]李亮亮, 屈可朋, 沈飞, 等. 基于霍普金森压杆的RDX基含铝炸药装药双脉冲加载实验[J]. 火炸药学报, 2018, 41(1): 52-56.
LI L L, QU K P, SHEN F, et al. Double-pulse loading experiment of RDX based aluminized explosive charge based on Hopkinson pressure bar[J]. Chinese Journal of Explosives & Propellants, 2018, 41(1): 52-56.
[13]代晓淦, 申春迎, 文玉史, 等. Steven试验中不同形状弹头撞击下炸药响应规律研究[J]. 含能材料, 2009, 17(1): 50-54.
DAI X G, SHEN C Y, WEN Y S, et al. Reaction rule for explosive under different shape warhead impact in steven test[J]. Chinese Journal of Energetic Materials, 2009, 17(1): 50-54.
[14]梁增友. 炸药冲击损伤与起爆特性[M]. 北京: 电子工业出版社, 2009.
[15]贾宪振, 王永顺, 刘瑞鹏. 炸药撞击刚性靶板的试验和数值模拟[J]. 兵器装备工程学报, 2019, 40(7): 212-216.
JIA X Z, WANG Y S, LIU R P. Test and numerical simulation of explosive impact with rigid target plate[J]. Journal of Ordnance Equipment Engineering, 2019, 40(7): 212-216.
[16]李兆娜, 马海霞, 宋纪蓉, 等. NTO的比热容、热力学性质及绝热至爆时间[J]. 火炸药学报, 2008, 31(3): 25-28.
LI Z N, MA H X, SONG J R, et al. Specific heat -capacity, thermodynamic properties and adiabatic time-to-explosion of NTO[J]. Chinese Journal of Explosives & Propellants, 2008, 31(3): 25-28.
[17]孙倩, 徐抗震, 宋纪蓉, 等. FOX-7及其五种衍生物的燃烧热和比热容研究[C]//中国化学会第五届全国热分析动力学与热动力学学术会议论文摘要集. 延安: 中国化学学会, 2015: 57.

相似文献/References:

[1]李鸿宾,王建灵,张为鹏,等.铝粉比表面积与质量分数对浆状温压炸药爆炸冲击波影响的实验研究[J].爆破器材,2013,42(01):5.[doi:10.3969/j.issn.1001-8352.2013.01.002]
 LI Hongbin,WANG Jianling,ZHANG Weipeng,et al.Experiment Study on the Effect of Specific Surface Area and Content of Aluminum Powder on Shock Wave Output of Slurry TBE[J].EXPLOSIVE MATERIALS,2013,42(05):5.[doi:10.3969/j.issn.1001-8352.2013.01.002]
[2]金朋刚,王晓峰,郭炜,等.温压炸药爆炸释热特性研究[J].爆破器材,2014,43(03):1.[doi:10.3969/j.issn.1001-8352.2014.03.001]
 JIN Penggang,WANG Xiaofeng,GUO Wei,et al.Research on the Heat Release Characters of TBX Explosion[J].EXPLOSIVE MATERIALS,2014,43(05):1.[doi:10.3969/j.issn.1001-8352.2014.03.001]
[3]韩早,王伯良,李席.全密闭空间内温压炸药的冲击波参数试验研究[J].爆破器材,2015,44(01):20.[doi:10.3969/j.issn.1001-8352.2015.01.005]
 HAN Zao,WANG Boliang,LI Xi.Experimental Study on Shock Wave Parameters of Thermobaric Explosive in Fully Enclosed Space[J].EXPLOSIVE MATERIALS,2015,44(05):20.[doi:10.3969/j.issn.1001-8352.2015.01.005]
[4]张玉磊,翟红波,李芝绒,等.TNT和温压炸药的爆炸火球表面温度对比试验研究[J].爆破器材,2015,44(05):23.[doi:10.3969/j.issn.1001-8352.2015.05.006]
 ZHANG Yulei,ZHAI Hongbo,LI Zhirong,et al.Experimental Research on the Contrast of the Fireball’s Surface Temperature of TNT and Thermobaric Explosive[J].EXPLOSIVE MATERIALS,2015,44(05):23.[doi:10.3969/j.issn.1001-8352.2015.05.006]
[5]张磊①,吴成成②,王正宏③,等.CL-20基压装型温压炸药的设计及性能研究[J].爆破器材,2022,51(05):7.[doi:10.3969/j.issn.1001-8352.2022.05.002]
 ZHANG Lei,WU Chengcheng,WANG Zhenghong,et al.Design and Performance Research on CL20 Based Pressed Thermobaric Explosive[J].EXPLOSIVE MATERIALS,2022,51(05):7.[doi:10.3969/j.issn.1001-8352.2022.05.002]
[6]王闯,李亚宁,李建,等.装药量对温压炸药爆炸毁伤威力的影响[J].爆破器材,2023,52(04):37.[doi:10.3969/j.issn.1001-8352.2023.04.006]
 WANG Chuang,LI Yaning,LI Jian,et al.The Influence of Charge Quantity on the Explosion Damage Power of Thermobaric Explosives[J].EXPLOSIVE MATERIALS,2023,52(05):37.[doi:10.3969/j.issn.1001-8352.2023.04.006]

备注/Memo

备注/Memo:
收稿日期:2019-10-28
基金项目:江苏省自然科学基金青年基金项目(BK20150780);江苏高校优势学科建设工程资助项目
第一作者:李宏伟(1993-),男,硕士研究生,主要从事含能材料安全性研究。E-mail :lhwperhaps@163.com
通信作者:王伯良(1964-),男,教授,主要从事爆炸力学研究。E-mail:boliangwang@163.com
更新日期/Last Update: 2020-10-05