[1]赵昌方①,赵昌兴②,任杰①,等.射流侵彻截面为六边形的液态复合密闭结构力学特点仿真分析[J].爆破器材,2020,49(01):8-13.[doi:10.3969/j.issn.1001-8352.2020.01.002]
 ZHAO Changfang,ZHAO Changxing,REN Jie,et al.Simulation Analysis on Mechanical Characteristics of Jet Penetration onto Liquid Composite Sealed Structure with Hexagon Section[J].EXPLOSIVE MATERIALS,2020,49(01):8-13.[doi:10.3969/j.issn.1001-8352.2020.01.002]
点击复制

射流侵彻截面为六边形的液态复合密闭结构力学特点仿真分析()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
49
期数:
2020年01
页码:
8-13
栏目:
基础理论
出版日期:
2020-01-20

文章信息/Info

Title:
Simulation Analysis on Mechanical Characteristics of Jet Penetration onto Liquid Composite Sealed Structure with Hexagon Section
文章编号:
5380
作者:
赵昌方赵昌兴任杰祖旭东张克斌卢炯彪
①南京理工大学机械工程学院(江苏南京,210094)
②湘潭大学材料科学与工程学院(湖南湘潭,411105)
③湖北三江航天江河化工科技有限公司(湖北远安,444299)
Author(s):
ZHAO Changfang ZHAO Changxing REN Jie ZU Xudong ZHANG Kebin LU Jiongbiao
① School of Mechanical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
② School of Materials Science and Engineering, Xiangtan University (Hu’nan Xiangtan, 411105)
③ Hubei Sanjiang Aerospace Jianghe Chemical Technology Co., Ltd. (Hubei Yuanan, 444299)
关键词:
力学特点截面为六边形的结构液态复合密闭结构射流侵彻有限元仿真
Keywords:
mechanical characteristics structure with hexagon section liquid composite closed structure jet penetration finite element simulation
分类号:
O385;TJ413.2
DOI:
10.3969/j.issn.1001-8352.2020.01.002
文献标志码:
A
摘要:
截面为六边形的液态复合密闭结构抗射流侵彻性能与其受力变形、应力、应变、能量变化息息相关。为了解密闭结构受射流侵彻的力学特点,采用理论分析与数值仿真相结合的方法,开展了研究。理论分析中,推导了射流的剩余头部速度;分析了密闭结构的受压情况,密闭结构微元的柯西(Cauchy)应变、格林(Green)应变、本构关系,侵彻系统的能量变化。数值仿真结果表明:射流侵彻进入液态复合密闭结构后,面板的等效应力从内到外呈环状逐渐递减;竖壁面的等效应力从上到下逐渐增大,在棱边上衰减,在底部集中;射流带动液体运动,进一步扩大背板孔口,并导致液体出现壅塞而产生逆流,使竖壁面产生附加应变;冯?米塞斯(Von Mises)应变集中在液态复合结构孔壁上,Green等效应变集中在密闭结构底部的内棱边上、以及面板和背板的孔口处;射流25 μs时开始侵彻液态复合密闭结构,射流、密闭结构、液体的能量均发生明显变化。
Abstract:
Anti-jet penetration performance of liquid composite sealed structure with hexagon section is closely related to applied force, deformation, stress, strain, and energy variation. In order to understand the mechanical characteristics of sealing structure subjected to jet penetration, theoretical analysis and numerical simulation were used. In theoretical analysis, the residual head velocity of the jet was derived. Pressure, Cauchy strain, Green strain, constitutive relation, and energy of the penetration system were analyzed. The numerical simulation results show that the equivalent stress decreases from inside to outside on the panel, increases of from upside to downside on the vertical wall, attenuates at the edge and concentrates at the bottom upon the jet penetration onto the liquid composite sealed structure with hexagon section. The jet drives the liquid to move, to expand further the orifice of back plate, leading to the choking of liquid and subsequent countercurrent, and additional strain on vertical wall. Von Mises equivalent strain is concentrated on the hole wall of the liquid composite structure, and the Green equivalent strain is concentrated on the inner edge of the bottom of the sealed structure, as well as on the orifice of the panel and the back plate. The jet begins to penetrate the liquid composite structure at 25 μs, and the energy of jet and sealing structure and liquid are all change significantly.

参考文献/References:

[1]高振宇, 黄正祥, 郭敏, 等. 饱含柴油密闭结构抗射流侵彻性能分析[J]. 振动与冲击, 2016, 35(14): 176-181.
GAO Z Y, HUANG Z X, GUO M, et al. Antipenetration performance analysis of diesel oil filled airtight structures against shaped charge jet[J]. Journal of Vibration and Shock, 2016, 35(14):176-181.
[2]MA B, HUANG Z X, XIAO Q Q, et al. Effect of external magnetic field loaded at the initial period of inertial stretching stage on the stability of shaped charge jet[J]. IEEE Transactions on Plasma Science, 2017, 45(5): 875-881.
[3]赵昌方, 祖旭东. 液体声速对单胞结构抗射流侵彻性能影响研究[J]. 中国科技论文, 2017, 12(22): 2565-2568.
ZHAO C F, ZU X D. Effect of liquid sound velocity on anti jet penetration performance of single cell structure [J]. Chinese Science Paper, 20117,12 (22): 2565-2568.
[4]赵昌方, 祖旭东. 液体密度对单胞结构抗射流侵彻性能的影响[J]. 弹箭与制导学报, 2018, 38(1): 65-68.
ZHAO C F, ZU X D. Effect of liquid density on the anti jet penetration performance of single cell structure [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(1): 65-68.
[5]赵昌方, 刘长瑞. 动力黏度对液态复合胞抗射流侵彻影响研究[J]. 兵器材料科学与工程, 2018, 41(6): 88-91.
ZHAO C F, LIU C R. Effect of dynamic viscosity on jet penetration resistance of liquid composite cell[J]. Ordnance Material Science and Engineering, 2018, 41(6): 88-91.
[6]赵昌方, 单锋, 俞江, 等. 结构形状对密闭胞元抗射流侵彻性能的影响[J]. 工程爆破, 2017,23(6): 22-25.
ZHAO C F, SHAN F, YU J, et al. Effect of structural shape on anti-jet penetration performance of closed cell [J]. Blasting, 2017,23 (6):22-25.
[7]单锋, 赵昌方, 祖旭东. 尺寸效应对密闭结构抗射流侵彻性能影响分析[J]. 兵器装备工程学报, 2018,39(3): 68-71.
SHAN F, ZHAO C F, ZU X D. Analysis of size effect on anti penetration performance of confined structure[J]. Journal of Ordnance Equipment Engineering, 2018, 39(3):68-71.
[8]张延昌, 王自力. 蜂窝式夹层板耐撞性能研究[J]. 江苏科技大学学报(自然科学版), 2007, 21(3): 1-5.
ZHANG Y C, WANG Z L. Study on Crashworthiness of honeycomb sandwich panels[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2007, 21(3): 1-5.
[9]NGUYEN M Q, JACOMBS S S, THOMSON R S, et al. Simulation of impact on sandwich structures[J]. Composite Structures, 2005, 67(2): 217-227.
[10]WHITE J J, WAHLL J M. Shaped charge jet interactions with liquids [C]// Proceedings of the 6th International Symposium on Ballistics. Orlando,FL,US: International Ballistics Society,1981: 305-311.
[11]ANDERSSON G, KARLSSON S, WATTERSTAM A. Shaped charge jet interaction with confined water [C]// Proceedings of the 17th International Symposium on Ballistics. Midrand, South Africa: The South Africa Ballistics Organisation, 1998:183-190.
[12]GREDIAE M. A finite element study of the transverse shear in honeycomb core[J]. International Journal of Solids and Structures, 1993, 30(13): 1777-1788.
[13]GIBSON L J, ASHBy M F. Cellular solids: structure and properties[M]. Cambridge:Cambridge University Press, 2014:487-488.
[14]朱易, 黄正祥, 祖旭东, 等. 爆炸载荷下蜂窝夹层复合结构吸能特性研究[J]. 弹箭与制导学报, 2014, 34(3): 194-198.
ZHU Y, HUANG Z X, ZU X D, et al. Research on energy absorption properties of honeycomb sandwich composite structures under explosive loading[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34 (3): 194-198.
[15]黄正祥, 祖旭东. 终点效应[M]. 北京:科学出版社, 2014. 136-183.
[16]肖强强, 黄正祥, 顾晓辉. 冲击波影响下的聚能射流侵彻扩孔方程[J]. 高压物理学报, 2011, 25(4): 333-338.
XIAO Q Q, HUANG Z X, GU X H. Equation of penetration and crater growth by shaped charge jet under the influence of shock wave[J]. Chinese Journal of High Pressure Physics, 2011, 25 (4): 333-338.
[17]王敏中, 王炜,武际可. 弹性力学教程[M]. 北京:北京大学出版社,2002:23-79.
[18]高振宇. 周期胞结构复合装甲抗射流侵彻性能研究[D]. 南京:南京理工大学, 2016:15-20.

备注/Memo

备注/Memo:
收稿日期:2019-07-07
基金项目:江苏省研究生科研与实践创新计划(KYCX19_0327)
第一作者:赵昌方(1995-),男,博士研究生,研究方向为兵器发射理论与技术。E-mail:lackychang@njust.edu.cn
通信作者:任杰(1982-),男,副教授,硕导,研究方向为兵器发射理论与技术。E-mail:renjie@njust.edu.cn
更新日期/Last Update: 2020-01-18