[1]陈炜①,刘巧娥②,陈腾①,等.GAP原位聚合包覆RDX的研究[J].爆破器材,2019,48(06):14-18,23.[doi:10.3969/j.issn.1001-8352.2019.06.003]
 CHEN Wei,LIU Qiaoe,CHEN Teng,et al.Study on RDX Coated by GAP through In-situ Polymerization[J].EXPLOSIVE MATERIALS,2019,48(06):14-18,23.[doi:10.3969/j.issn.1001-8352.2019.06.003]
点击复制

GAP原位聚合包覆RDX的研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
48
期数:
2019年06
页码:
14-18,23
栏目:
基础理论
出版日期:
2019-12-09

文章信息/Info

Title:
Study on RDX Coated by GAP through In-situ Polymerization
文章编号:
5370
作者:
陈炜刘巧娥陈腾郝嘎子胡玉冰姜炜
①南京理工大学化工学院(江苏南京,210094)
②甘肃银光化学工业集团有限公司科研所(甘肃白银,730900)
Author(s):
CHEN Wei LIU Qiaoe CHEN Teng HAO GaziHU Yubing JIANG Wei
① School of Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
② Research Institute of Gansu Yinguang Chemical Industry Group Co., Ltd. (Gansu Baiyin, 730900)
关键词:
原位聚合GAP-TDI/RDX复合材料热分解
Keywords:
in-situ polymerization GAP-TDI/RDX composite material thermal decomposition
分类号:
TJ55
DOI:
10.3969/j.issn.1001-8352.2019.06.003
文献标志码:
A
摘要:
以聚叠氮缩水甘油醚(GAP)为包覆层材料,甲苯二异氰酸酯(TDI)为交联剂,二月桂酸二丁基锡(DBTDL)为催化剂,乙酸乙酯为溶剂,采用原位聚合法,制备了GAP-TDI/RDX复合材料。利用SEM、FT-IR、XRD、DTA对样品进行了形貌表征和性能测试;利用DTA对其热分解特性进行了研究,结合不同升温速率下的DTA曲线对样品的热分解动力学参数进行了计算。结果表明,GAP成功包覆在RDX表面。所制备的GAP-TDI/RDX复合材料的热分解表观活化能相比原料RDX降低了4.6 kJ/mol,说明复合材料的热分解活性得到提高;GAP-TDI/RDX复合材料的特性落高H50从15.2 cm提升至25.6 cm。
Abstract:
A GAP-TDI/RDX composite was prepared via in-situ polymerization by using Glycidyl azide polymer (GAP) as a coating material, toluene diisocyanate (TDI) as a crosslinking agent, dibutyltin dilaurate (DBTDL) as a catalyst, and ethyl acetate as a solvent. Morphology and performance of the samples were characterized by SEM, FT-IR, XRD and DTA. Thermal decomposition characteristics of the sample were studied by DTA, and thermal decomposition kinetic parameters of the sample were calculated by integrating the DTA curves at different heating rates. The results show that GAP successfully coats on the surface of RDX. The apparent activation energy of thermal decomposition of the prepared GAP-TDI/RDX composites is 4.6 kJ/mol lower than that of the raw material RDX, indicating that the thermal decomposition activity of the composites has been improved. The characteristic drop height, H50, of the GAP-TDI/RDX composite increases from 15.2 cm to 25.6 cm.

参考文献/References:

[1]李宁, 肖乐勤, 菅晓霞, 等. GAP基含能聚氨酯弹性体包覆RDX的研究[J]. 固体火箭技术, 2012, 35(2): 212-215.
LI N, XIAO L Q, JIAN X X, et al. Coating of RDX with GAP-based energetic polyurethane elastomer [J]. Journal of Solid Rocket Technology, 2012, 35(2): 212-215.
[2]王娟, 孙笑, 周新利. 高级脂肪酸酯类化合物包覆RDX的研究[J]. 含能材料, 2015, 23(6): 527-531.
WANG J, SUN X, ZHOU X L. Properties of RDX coated by higher aliphatic ester compounds [J]. Chinese Journal of Energetic Materials, 2015, 23(6): 527-531.
[3]YANG Z J, DING L, WU P, et al. Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine-formaldehyde resins with reduced sensitivity [J]. Chemical Engineering Journal, 2015, 268:60-66.
[4]XIONG S L, CHEN S S, JIN S H. Molecular dynamic simulations on TKX-50/RDX cocrystal [J]. Journal of Molecular Graphics & Modelling, 2017, 74:171-176.
[5]FISCHER N, FISCHER D, KLAPOTKE T, et al. Pushing the limits of energetic materials:the synthesis and characterization of dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate [J]. Journal of Materials Chemistry, 2012, 22(38): 20418-20422.
[6]YANG Z W, WANG H J, MA Y H, et al. Isomeric cocrystals of CL-20: a promising strategy for development of high-performance explosives [J]. Crystal Growth & Design, 2018, 18(11): 6399-6403.
[7]邓国栋, 刘宏英. 黑索今超细化技术研究[J]. 爆破器材, 2009, 38(3): 31-34,37.
DENG G D, LIU H Y. Study on technology of making the superfine powder of RDX by grinding [J]. Explosive Materials, 2009, 38(3): 31-34,37.
[8]兰元飞, 李霄羽, 罗运军. 石墨烯在含能材料中的应用研究进展[J]. 火炸药学报, 2015, 38(1): 1-7.
LAN Y F, LI X Y, LUO Y J. Research progress on application of graphene in energetic materials [J]. Chinese Journal of Explosives & Propellants, 2015, 38(1):1-7.
[9]牛春欢. 碳纳米材料对CL-20和HMX的降感性能研究[D]. 绵阳:西南科技大学,2018.
NIU C H. The research of insensitive performance for CL-20 and HMX with carbon nanomaterials [D]. Mian-yang: Southwest University of Science and Technology, 2018.
[10]李丹,王晶禹,姜夏冰,等.硬脂酸包覆超细RDX及其撞击感度[J].火炸药学报,2009,32(1):40-43.
LI D,WANG J Y, JIANG X B, et al. Ultra-fine RDX coated with stearic acid and its impact sensitivity [J]. Chinese Journal of Explosives & Propellants, 2009, 32(1): 40-43.
[11]周彩元, 吴晓青, 邓茂盛, 等. 改性水性聚氨酯乳液包覆RDX的合成研究[J]. 中国胶粘剂, 2010, 19(1): 40-43.
ZHOU C Y, WU X Q, DENG M S, et al. Study on synthesis of RDX coated by modified waterborne polyurethane emulsion [J]. China Adhesives, 2010, 19(1): 40-43.
[12]刘树浩, 张景林, 张俊, 等. HMX的氟橡胶包覆技术及其撞击感度研究[J]. 中国安全生产科学技术, 2011, 7(6): 5-8.
LIU S H, ZHANG J L, ZHANG J, et al. Study on coated technology of HMX with FPM2602 and its impact sensitivity [J]. Journal of Safety Science and Technolog, 2011, 7(6): 5-8.
[13]李江存, 焦清介, 任慧, 等. 层层组装法制备NC-BA-RDX包覆球[J]. 固体火箭技术, 2008,31(3): 247-250,261.
LI J C, JIAO Q J, REN H, et al. Preparation of NC-BA-RDX coating ball particles by means of layer-to-layer assembly technique [J]. Journal of Solid Rocket Technology, 2008,31(3): 247-250,261.
[14]边桂珍, 郭效德, 刘开伟, 等. BAMO-THF共聚醚原位结晶包覆HMX[J]. 火炸药学报, 2014, 37(1): 35-38.
BIAN G Z, GUO X D, LIU K W, et al. In-situ crystallization coating HMX by BAMO-THF copolyether [J]. Chinese Journal of Explosives & Propellants, 2014, 37(1): 35-38.
[15]侯聪花, 于卫龙, 贾新磊 等. CL-20/TATB粘结炸药制备及其表征[J]. 火工品, 2016(3): 26-29.
HOU C H, YU W L, JIA X L, et al. Preparation and characterization of CL-20/TATB polymer bonded explosive [J]. Initiators & Pyrotechnics, 2016(3): 26-29.
[16]高元元, 朱顺官, 陈鹏源. NTO包覆HMX的钝感研究[J]. 火炸药学报, 2014, 37(1): 61-65.
GAO Y Y, ZHU S G, CHEN P Y. Research on insensitivity of HMX coated with NTO [J]. Chinese Journal of Explosives & Propellants, 2014, 37(1): 61-65.
[17]屈晨曦, 葛忠学, 张敏, 等. CL-20/HATO复合物的制备、表征及性能[J]. 含能材料, 2018, 26(10): 850-855.
QU C X, GE Z X, ZHANG M, et al. Preparation, characterization and properties of CL-20/HATO compo-site [J]. Chinese Journal of Energetic Materials, 2018, 26(10): 850-855.
[18]孟征, 欧育湘, 刘进全, 等. 蜜胺甲醛树脂原位聚合法包覆六硝基六氮杂异伍兹烷[J]. 含能材料, 2006, 14(5):333-335,339.
MENG Z, OU Y X, LIU J Q, et al. Coating of ε-HNIW with melamine formaldehyde resin by in-situ condensatesation polymerization reaction [J]. Chinese Journal of Energetic Materials, 2006, 14(5):333-335,339.
[19]王旭朋, 罗运军, 郭凯, 等. 聚叠氮缩水甘油醚的合成与改性研究进展[J]. 精细化工, 2009, 26(8): 813-817.
WANG X P, LUO Y J, GUO K, et al. Research advances in synthesis and modification of glycidyl azide polymer[J]. Fine Chemicals, 2009, 26(8): 813-817.
[20]邓竞科, 李国平, 罗运军. GAP黏合剂体系交联网络结构研究[J]. 高分子学报, 2016(4): 464-470.
DENG J K, LI G P, LUO Y J. Studies on cross-linking network structure of GAP binder system [J]. Acta Polymer Sinica, 2016(4): 464-470.
[21]陈腾,李强,郭双峰,等. GAP-HDI/CL-20纳米复合含能材料的制备、表征及其热分解特性[J].火炸药学报,2018,41(3):243-249.
CHEN T, LI Q, GUO S F, et al. Preparation,characterization and thermal decomposition behavior of GAP-HDI/CL-20 nano-composite energetic materials [J]. Chinese Journal of Explosives & Propellants, 2018, 41(3): 243-249.

备注/Memo

备注/Memo:
收稿日期:2019-06-11
基金项目:国家安全重大基础研究项目;基础产品创新火炸药科研专项;国防科技卓越青年科学基金
第一作者:陈炜(1995-),男,硕士研究生,主要从事纳米复合含能材料的制备及性能研究。E-mail:chenwei401@tju.edu.cn
通信作者:姜炜(1974-),男,教授,主要从事纳米复合含能材料的制备及性能研究。E-mail:superfine_jw@126.com
更新日期/Last Update: 2019-12-03