[1]王泽清①,余咸旱②,刘威①,等.聚醋酸乙烯酯与黑索今体系的分子动力学模拟[J].爆破器材,2019,48(05):6-11.[doi:10.3969/j.issn.1001-8352.2019.05.002]
 WANG Zeqing,YU Xianhan,LIU Wei,et al.Molecular Dynamics Simulation of PVAc and RDX[J].EXPLOSIVE MATERIALS,2019,48(05):6-11.[doi:10.3969/j.issn.1001-8352.2019.05.002]
点击复制

聚醋酸乙烯酯与黑索今体系的分子动力学模拟()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
48
期数:
2019年05
页码:
6-11
栏目:
基础理论
出版日期:
2019-09-29

文章信息/Info

Title:
Molecular Dynamics Simulation of PVAc and RDX
文章编号:
5367
作者:
王泽清余咸旱刘威高登学郝尧刚张璇陈厚和
①南京理工大学化工学院(江苏南京,210094)
②甘肃银光化学工业集团有限公司(甘肃白银,730900)
Author(s):
WANG Zeqing YU Xianhan LIU Wei GAO Dengxue HAO Yaogang ZHANG Xuan CHEN Houhe
①School of Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
②Gansu Yinguang Chenmistry Corporation (Gansu Baiyin, 730900)
关键词:
分子动力学黑索今结合能力学性能
Keywords:
molecular dynamics hexogen binding energy mechanical properties
分类号:
TQ560.1;O643.1
DOI:
10.3969/j.issn.1001-8352.2019.05.002
文献标志码:
A
摘要:
聚醋酸乙烯酯(PVAc)与黑索今(RDX)的界面相互作用会直接影响RDX的表面包覆效果,因此,在原子、分子层次研究其作用方式,可以发现相互作用机制。利用分子动力学模拟方法,以径向分布函数描述组分间相互作用的方式;研究不同温度下PVAc与RDX晶面的相互作用,并计算PVAc在RDX晶体表面的扩散速率。结果表明,在298~353 K温度下,PVAc与RDX的结合能随温度升高略有降低;通过对有效各向同性模量和柯西压的分析得到,加入PVAc能够有效改善RDX的力学性能。此外,在343 K的温度下,PVAc在RDX表面的扩散速率最大,体系的力学性能最为优异。
Abstract:
Interfacial interaction between polyvinyl acetate (PVAc) and hexogen (RDX) directly affects the surface coating effect. Therefore, the interaction mechanism can be found by studying its mode of action at the atomic and molecular level. Molecular dynamics simulation method was used to describe the interaction between components by radial distribution function. Interaction between PVAc and RDX crystal planes at different temperatures was studied, and diffusion rate of PVAc on the surface of RDX crystal was calculated. The results show that binding energy of PVAc and RDX decreases slightly with the increase of temperature at 298-353 K. By analyzing the effective isotropic modulus and Cauchy pressure, it has been found that PVAc can effectively improve the mechanical properties of RDX. In addition, at the temperature of 343 K, diffusion rate of PVAc on the surface of RDX is the largest, and the mechanical properties of the system are the most excellent.

参考文献/References:

[1]任务正, 王泽山.火炸药理论与实践[M].北京:中国北方化学工业总公司, 2001.
[2]KINCAID J F, REED R. Bonding agent for HMX(cyclotetramethylenetetranitramine):4350542[P].1982-09-21.
[3]SOMOZA C. Process for reducing sensitivity in explosives:US5279492[P]. 1994-01-08.
[4]MONNIER A, SHUTH F, HUO Q, et al. Cooperative for mation of inorganic-organic interfaces in the synthesis of silicatemeso structures[J].Science,1993, 261(5126):1299-1303.
[5]JONES W T. Desensitizing explosives : US4425170[P]. 1984-01-10.
[6]李江存, 焦清介, 任慧, 等. 海因/三嗪类复合键合剂包覆黑索今的研究[J]. 含能材料, 2008, 16(1):56-59.
LI J C,JIAO Q J,REN H,et al. RDX coated with hyantoin/triazines composite bonding agent[J].Chinese Journal of Energetic Materials,2008, 16(1):56-59.
[7]李江存, 焦清介, 任慧, 等. 不同键合剂与RDX表界面作用[J]. 含能材料, 2009, 17(3): 274-277.
LI J C,JIAO Q J,REN H,et al. Interfacial bonding between RDX and bonding agents[J]. Chinese Journal of Energetic Materials, 2009, 17(3): 274-277.
[8]肖继军,谷成刚,方国勇,等.TATB基PBX结合能和力学性能的理论研究[J]. 化学学报,2005,63(6): 439-444.
XIAO J J, GU C G, FANG G Y, et al. Theoretical study on binding energies and mechanical properties of TATB-based PBX[J]. Acta Chimica Sinica, 2005,63(6): 439-444.
[9]杨志剑,刘晓波,何冠松,等. 混合炸药设计研究进展[J]. 含能材料,2017,25(1):2-11.
YANG Z J,LIU X B,HE G S,et al. Advancesin design and research of composite explosives[J]. Chinese Journal of Energetic Materials,2017,25(1):2-11.
[10]LIU Z W,XIE H M,LI K X,et al. Fracture behavior of PBX simulation subject to combined thermal and mechanical loads[J].Polymer Testing,2009,28(6):627-635.
[11]WEESE R K,BURNHAM A K,TURNER H C,et al. Physical characterizationof RX-55-AE-5 a formulation of 97.5% 2,6-diamino-3,5-dinitropyrazine-1-oxide(LLM-105)and 2.5% Viton A:UCRL-CONF-214557[R]. Lawrence Livermore National Laboratory,CA,2005.
[12]WANG H J,LIU S S. Study on coating and technological conditions of LLM-105[J]. Advanced Materials Research,2011,328/329/330:1161-1166.
[13]XIAO J J,HUANG H,LI J S,et al. Computation of interface interactions and mechanical properties of HMX-based PBX with Estane 5703 from atomic simulation[J]. Journal of Materials Science,2008,43(17):5685-5691.
[14]WANG H J. The choice and application of binder in new energetic matierals[J]. Applied Mechanics & Mate-rials,2013,330:3-7.
[15]CHOI C S,PRINCE E.The crystal structure of cyclotrimethylenetrinitramine[J].Acta Crystallographica,1972,B28:2857-2862.
[16]BUNTEAND S W, SUN H. Molecular modeling of energetic materials: the parameterization andvalidation of nitrateesters in the COMPASS force field[J]. Physical Chemistry B, 2000, 104: 2477-2480.
[17]LI C L, ZHANG T T, JI X J, et al. Effect of Ca2+/Mg2+ on the stability of the foam system stabilized by an anionic surfactant: a molecular dynamics study[J]. Colloids and Surfaces A: Physicochemical and Enginee-ring Aspects, 2016, 489: 423-432.
[18]KARASAWA N, GODDARD W A. Force fields, structures, and properties of poly (vinylidene fluoride) crystals [J]. Macromolecules, 1992, 25(26):7268-7272.
[19]EWALD P P. Evaluation of optical and electrostatic lattice potentials[J]. Annalen der Physik, 1921, 369(3):253-255.
[20]QIU L, XIAO H M. Molecular dynamics study of binding energies,mechanical properties, and detonation performances of bicycle HMX-based PBXs [J]. Journal of Hazardous Materials, 2009, 164(1):329-336.
[21]ZHU W, XIAO J J, ZHU W H, et al. Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives [J]. Journal of Hazardous Materials, 2009, 164(2/3): 1082-1088.

相似文献/References:

[1]邓国栋,刘宏英.黑索今超细化技术研究[J].爆破器材,2009,38(03):31.
 DENG Guodong,LIU Hongying.Study on Technology of Making the Superfine Powder of RDX by Grinding[J].EXPLOSIVE MATERIALS,2009,38(05):31.
[2]陶俊,王晓峰,王彩玲,等.聚四氟乙烯包覆铝粉烧结的模拟与分析[J].爆破器材,2015,44(02):18.[doi:10.3969/j.issn.10018352.2015.02.005]
 TAO Jun,WANG Xiaofeng,WANG Cailing,et al.Simulation and Analysis of the Sintering Process of Aluminum Powder Coated by Teflon[J].EXPLOSIVE MATERIALS,2015,44(05):18.[doi:10.3969/j.issn.10018352.2015.02.005]
[3]荣光富①,黄寅生②.两种高能点火药对炸药燃烧转爆轰的影响[J].爆破器材,2008,37(05):20.
 Rong Guangfu,Huang Yinsheng.Influence of Two High-energy Ignition Compositions on Transformnation of Combustion to Detonation of Explosives[J].EXPLOSIVE MATERIALS,2008,37(05):20.
[4]周帅①,邓国栋①,李大勇②,等.近红外漫反射光谱法快速检测火药吸收药混合液中黑索今组分含量[J].爆破器材,2015,44(06):54.[doi:10.3969/j.issn.1001-8352.2015.06.013]
 ZHOU Shuai,DENG Guodong,LI Dayong,et al.Fast Determination of RDX Content in Gunpowder Absorbent Powder by Near Infrared Spectroscopy Technique[J].EXPLOSIVE MATERIALS,2015,44(05):54.[doi:10.3969/j.issn.1001-8352.2015.06.013]
[5]石先锐,闫光虎,贾永杰,等.RDX和NGU对叠氮硝胺发射药动态燃烧稳定性的影响[J].爆破器材,2020,49(05):14.[doi:doi:10.3969/j.issn.1001-8352.2020.05.003]
 SHI Xianrui,YAN Guanghu,JIA Yongjie,et al.Influence of RDX and NGU on the Dynamic Combustion Stability of Azidonitramine Gun Propellants[J].EXPLOSIVE MATERIALS,2020,49(05):14.[doi:doi:10.3969/j.issn.1001-8352.2020.05.003]
[6]高杰,王红星,金大勇,等.DNAN/DNTF二元共熔物在热和机械刺激下的安全性研究[J].爆破器材,2021,50(03):35.[doi:10.3969/j.issn.1001-8352.2021.03.007]
 GAO Jie,WANG Hongxing,JIN Dayong,et al.Safety of DNAN/DNTF Binary Eutectic under Thermal Stimulation and Mechanical Stimulation[J].EXPLOSIVE MATERIALS,2021,50(05):35.[doi:10.3969/j.issn.1001-8352.2021.03.007]
[7]孙翠①,张力②.基于分子动力学的DNAN基熔铸炸药结合能和热分解反应性能研究[J].爆破器材,2022,51(03):1.[doi:10.3969/j.issn.1001-8352.2022.03.001]
 SUN Cui,ZHANG Li.Binding Energy and Thermal Decomposition Reaction Properties of DNAN-Based Melt-Cast Explosive Based on Molecular Dynamics[J].EXPLOSIVE MATERIALS,2022,51(05):1.[doi:10.3969/j.issn.1001-8352.2022.03.001]
[8]刘静平①,杨振欣②,赵懿明②,等.褐煤煤尘爆炸火焰传播特性及燃烧热分解机理研究[J].爆破器材,2022,51(06):16.[doi:10.3969/j.issn.1001-8352.2022.06.003]
 LIU Jingping,YANG Zhenxin,ZHAO Yiming,et al.Study on Flame Propagation Characteristics and Combustion Pyrolysis Mechanism of Lignite Dust Explosion[J].EXPLOSIVE MATERIALS,2022,51(05):16.[doi:10.3969/j.issn.1001-8352.2022.06.003]

备注/Memo

备注/Memo:
收稿日期:2019-05-28
第一作者:王泽清(1993-),男,硕士,主要从事含能材料包覆技术的研究。E-mail:awesomewzq@163.com
通信作者:陈厚和(1961-),男,博士,研究员,主要从事含能材料的研究。E-mail:chhh42792@sina.cn
更新日期/Last Update: 2019-09-27