[1]赵旭.高能气体压裂过程中压井液运动计算模型研究[J].爆破器材,2020,49(02):29-33.[doi:10.3969/j.issn.1001-8352.2020.02.005]
 ZHAO Xu.Modeling of Controlling Fluid Movement during High-energy Gas Fracturing[J].EXPLOSIVE MATERIALS,2020,49(02):29-33.[doi:10.3969/j.issn.1001-8352.2020.02.005]
点击复制

高能气体压裂过程中压井液运动计算模型研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
49
期数:
2020年02
页码:
29-33
栏目:
爆炸材料
出版日期:
2020-04-07

文章信息/Info

Title:
Modeling of Controlling Fluid Movement during High-energy Gas Fracturing
文章编号:
5355
作者:
赵旭
中国石化石油工程技术研究院(北京,100101)
Author(s):
ZHAO Xu
Sinopec Research Institute of Petroleum Engineering (Beijing, 100101)
关键词:
高能气体压裂压井液理论分析计算模型计算实例
Keywords:
high-energy gas fracturing (HEGF) control fluid theoretical analysis calculation model calculation examples
分类号:
TE257.1
DOI:
10.3969/j.issn.1001-8352.2020.02.005
文献标志码:
A
摘要:
针对压井液运动对高能气体压裂作用效果影响较大、现有技术对压井液运动过程研究不足的问题,开展了高能气体压裂过程中压井液运动特性及作用效果研究。按照压井液在高能气体压裂作用过程中的运动过程,分别建立了压井液运动流体压缩阶段、刚体运动阶段及压井液运动能量损耗计算模型;在此基础上,通过计算实例对高能气体压裂过程中的压井液运动及作用效果进行了进一步的分析。结果表明,所建立的描述高能气体压裂过程中压裂火药燃烧时间内的压井液运动计算模型具有较好的合理性和适用性,可以应用到现有的复合射孔高能气体压裂理论计算模型体系中。
Abstract:
Characterization on the movement of controlling fluid and its influence on the effectiveness of high-energy gas fracturing (HEGF) were studied. Based on the movement features of control fluid displayed during the gas-liquid interaction in HEGF, calculation models were stablished for fluid compression stage, rigid motion stage, and energy loss of control liquid motion, respectively. The movement and effect control fluid in the process of HEGF were further analyzed through calculation examples. Results show that the established model describing the control fluid movement during the combustion time of fracturing propellant in HEGF has good rationality, stability and applicability, and can be applied to the existing theoretical calculation model system of HEGF with composite perforation.

参考文献/References:

[1]孙新波,刘辉,王宝兴,等.复合射孔技术综述[J].爆破器材,2007,36(5):29-32.
?SUN X B,LIU H,WANG B X,et al. Review of propellant perforation techniques[J]. Explosive Materials,2007,36(5): 29-32.
[2]杨坤,于江.多脉冲复合射孔器研制与应用[J].石油管材与仪器,2018,4(3):15-17,21.
?YANG K,YU J. Development and application of multi-pulse compound perforator [J].Petroleum Tubular Goods & Instruments,2018,4(3):15-17,21.
[3]王海东,孙新波.国内外射孔技术发展综述[J].爆破器材,2006,35(3):33-36.
?WANG H D, SUN X B. A summary of perforating technology development inside and outside of China [J]. Explosive Materials, 2006, 35(3): 33-36.
[4]卢刚,杨晓莉,史雪枝.川西地区复合射孔优化设计研究[J].测井技术,2018,42(4):484-488.
?LU G,YANG X L,SHI X Z.Optimaization design of composite perforation in western Sichuan[J].Well Logging Technology,2018,42(4):484-488.
[5]练章华,丁士东,赵旭,等. 元坝气井射孔完井近井壁渗流场分析[J]. 西南石油大学学报(自然科学版),2013, 36(6):173-180.
?LIAN Z H,DING S D,ZHAO X,et al. Analysis of the fluid flow field near wellbore wall of gas-well perforated completion in Yuanba[J]. Journal of Southwest Petro-leum University (Science & Technology Edition),2013,36(6):173-180.
[6]李克明.高能复合射孔技术及应用前景[J].石油钻探技术,2002,30(3):72-74.
?LI K M. High power, multiplex perforation techniques and its prospest[J]. Petroleum Drilling Techniques, 2002, 30(3): 72-74.
[7]YANG W Y, ZHOU C H, QIN F D, et al. High-energy gas fracturing (HEGF) technology:research and application[C]//European Petroteum Conference. Cannes, France,1992.
[8]张飞,贾居红,蔡薇.复合射孔器爆燃气体压力计算模型[J].兵工自动化,2016, 35(12): 41-44.
ZHANG F,JIA J H,CAI W.Calculation model for detonation gas pressure in compound perforation[J]. Ordnance Industry Automation,2016,35(12): 41-44.
[9]李海涛,罗伟,姜雨省,等.复合射孔爆燃气体压裂裂缝起裂扩展研究[J].爆炸与冲击,2014,34(3):307-314.
?LI H T, LUO W, JIANG Y S,et al.Initiation and extension of gas-driven fracture during compound perforation[J].Explosion and Shock Waves,2014,34(3):307-314.
[10]梁龙河. 水下爆炸特性的数值研究[D].北京:应用物理与计算数学研究所,2001.
[11]贺礼清. 工程流体力学[M].北京:石油工业出版社,2004:21-87.
[12]赵旭,柳贡慧.复合射孔上部压井液运动理论模型研究[J].钻井液与完井液,2008,25(3):7-9,21.
[13]李文勋.水力学中的微分方程及其应用[M].韩祖恒,郑开琪,译.上海:上海科学技术出版社,1972:162-170.
[14]于洋,任锋玥.封隔器在复合射孔中的应用[J].西安科技大学学报,2007,27(3):423-426.
YU Y, REN F Y. Application of packer in fracture perforating[J]. Journal of Xi’an University of Science and Technology,2007,27(3):423-426.
[15]汪志明,崔海清,何光渝. 流体力学[M].北京:石油工业出版社,2006:75-142.
[16]恽寿榕,赵衡阳.爆炸力学[M].北京:国防工业出版社,2005:219-257.
[17]王安仕,秦发动.高能气体压裂技术[M].西安:西北大学出版社,1998.

备注/Memo

备注/Memo:
收稿日期:2019-04-23
基金项目:国家科技重大专项课题,海相碳酸盐岩超深油气井关键工程技术(2017ZX05005-005);中石化科技部推广项目,自适应调流控水完井技术推广与工业化应用(P16117)
第一作者:赵旭(1981-),男,高工,主要从事井筒内复杂流动与控制、现代完井工程方面的研究。E-mail:zhaoxu46@163.com
更新日期/Last Update: 2020-04-07