参考文献/References:
[1]庞爱民, 郑剑. 高能固体推进剂技术未来发展展望 [J]. 固体火箭技术, 2004, 27(4): 289-293.
?PANG A M, ZHENG J. Prospect of the research and development of high energy solid propellant technology[J]. Journal of Solid Rocket Technology, 2004, 27(4): 289-293.
[2]罗运军, 刘晶如. 高能固体推进剂研究进展[J]. 含能材料, 2007, 15(4): 407-410.
?LUO Y J, LIU J R. Research progress of high energy solid propellant[J]. Chinese Journal of Energetic Mate-rials, 2007, 15(4): 407-410.
[3]孙运兰. 新型含能材料的燃烧机理研究[D]. 合肥: 中国科学技术大学, 2007.
?SUN Y L. Combustion mechanism of new promising energetic materials[D]. Hefei: University of Science and Technology of China, 2007.
[4]DIAZ E, BROUSSEAU P, AMPLEMAN G, et al. Heats of combustion and formation of new energetic thermoplastic elastomers based on GAP, polyNIMMO and polyGLYN [J]. Propellants, Explosives, Pyrotechnics, 2003, 28(3): 101-106.
[5]周晓杨, 唐根, 庞爱民. ADN推进剂国外研究进展[J]. 飞航导弹, 2017(2):87-92.
?ZHOU X Y, TANG G, PANG A M. Research progress of ADN propellant[J]. Aerodynamic Missile Journal, 2017(2):87-92.
[6]HEINTZ T, PONTIUS H, ANIOL J, et al. Ammonium dinitramide (ADN): prilling, coating, and characterization [J]. Propellants, Explosives, Pyrotechnics, 2009, 34(3): 231-238.
[7]MENKE K, HEINTZ T, SCHWEIKERT W, et al. Approaches to ADN propellants based on two different binder systems[C]//Proceedings of the 39th International Annual Conference of ICT. Karlsruhe, Germany, 2008.
[8]潘永飞, 汪营磊, 陈斌, 等. 二硝酰胺铵(ADN)球形化技术研究进展[J]. 爆破器材, 2018, 47(5): 1-8.
?PAN Y F, WANG Y L, CHEN B, et al. Research status of spheroidization of ammonium dinitramide (ADN)[J]. Explosive Materials, 2018, 47(5): 1-8.
[9]居平文. 双环四唑类含能化合物的合成研究[D]. 南京: 南京理工大学, 2015.
?JU P W. Synthesis of bicyco-tetrazolium energetic compounds[D]. Nanjing: Nanjing University of Science & Technology, 2015.
[10]宗和厚, 张伟斌, 李华荣, 等. TKX-50高压下结构、力学性质及电子特性的第一性原理研究[J]. 含能材料, 2018, 26(1): 59-65.
?ZONG H H, ZHANG W B, LI H R, et al. Structural, mechanical and electronic properties of dihydroxylammonium 5,5’-bistetrazole-1,1’ -diolate (TKX50) under high pressures: a first-principles study[J]. Chinese Journal of Energetic Materials, 2018, 26(1): 59-65.
[11]余一, 张蕾, 姜胜利. TKX-50热分解氮气形成机理的分子动力学模拟[J]. 含能材料, 2018, 26(1): 75-79.
?YU Y, ZHANG L, JIANG S L. Molecular simulation on the nitrogen generation in thermal decomposition of TKX-50[J]. Chinese Journal of Energetic Materials, 2018, 26(1): 75-79.
[12]FISCHER N, FISCHER D, KLAPOTAKE T M, et al. Pushing the limits of energetic materials:the synthesis and characterization of dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate[J]. Journal of Materials Che-mistry, 2012, 22(38): 20418-20422.
[13]庞爱民. 固体火箭推进剂理论与工程[M]. 北京:中国宇航出版社, 2014.
?PANG A M. Solid rocket propellant theory and enginee-ring[M]. Beijing:China Aerospace Publishing Press, 2014.
[14]李猛, 赵凤起, 罗阳. 含5,5’-联四唑-1,1’-二氧二羟铵推进剂的能量特性计算[J]. 含能材料, 2014, 22(3): 286-290.?
LI M, ZHAO F Q, LUO Y. Energetic characteristics computation of propellants containing dihydroxylammo-nium 5,5’-biste- trazole-1,1’-diolate(TKX-50)[J]. Chinese Journal of Energetic Materials, 2014, 22(3): 286-290.
[15]曹一林, 刘剑平. 氧化高氮杂环羟胺盐在固体推进剂中的能量性能分析[J]. 含能材料, 2015, 23(10): 919-923.
?CAO Y L, LIU J P. Analysis of energy performance of oxidation high nitrogen heterocycle hydroxylammonium salts in the solid propellants[J]. Chinese Journal of Energetic Materials, 2015, 23(10):919-923.
[16]郑剑, 候林法, 杨仲雄. 高能固体推进剂技术回顾与展望[J]. 固体火箭技术, 2001(1): 28-34.
?ZHENG J, HOU L F, YANG Z X. The progress and prospects of high energy propellants[J]. Journal of Solid Rocket Technology, 2001(1):2834.
[17]MATSUNAGA H, KATOH K, HABU H, et al. Thermal behavior of ammonium dinitramide and amine nitrate mixtures[J]. Journal of Thermal Analysis and Calori-metry, 2019, 135(5): 2677-2685.
[18]刘晶如, 罗运军, 杨寅. 新一代高能固体推进剂的能量特性计算研究[J].含能材料,2008,16(1):94-99.?
LIU J R, LUO Y J, YANG Y. Energetic characteristics calculation of a new generation of high energy solid propellant[J]. Chinese Journal of Energetic Materials, 2008, 16(1):94-99.
[19]李谨卫, 庞爱民, 吴京汉. GAP高能低特征信号推进剂的研究[J].固体火箭技术,2001,24(3):42-46.
?LI J W, PANG A M, WU J H. Study on GAP based high energy, low signature propellant[J]. Journal of Solid Rocket Technology, 2001, 24(3): 42-46.