[1]杨胜晖,郑波.含铝温压炸药的爆炸能量结构研究[J].爆破器材,2019,48(02):20-24.[doi:10.3969/j.issn.1001-8352.2019.02.004]
 YANG Shenghui,ZHENG Bo.Explosion Energy Structure of Aluminized Thermobaric Explosive[J].EXPLOSIVE MATERIALS,2019,48(02):20-24.[doi:10.3969/j.issn.1001-8352.2019.02.004]
点击复制

含铝温压炸药的爆炸能量结构研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
48
期数:
2019年02
页码:
20-24
栏目:
基础理论
出版日期:
2019-04-02

文章信息/Info

Title:
Explosion Energy Structure of Aluminized Thermobaric Explosive
文章编号:
5317
作者:
杨胜晖郑波
北京理工大学爆炸科学与技术国家重点实验室(北京,100081)
Author(s):
YANG Shenghui ZHENG Bo
State Key Laboratory of Explosive Science and Technology, Beijing Institute of Technology (Beijing, 100081)
关键词:
爆炸力学含铝温压炸药爆炸环境能量结构
Keywords:
explosion mechanics aluminized thermobaric explosives explosion atmosphere energy structure
分类号:
O381
DOI:
10.3969/j.issn.1001-8352.2019.02.004
文献标志码:
A
摘要:
为了研究黑索今(RDX)基含铝温压炸药的爆炸能量释放规律及爆炸能量输出结构,对5种含铝温压炸药的爆热和爆速进行了测试,利用绝热式爆热量热计测量了铝粉质量分数为30%的RDX基含铝温压炸药在真空、0.1 MPa氮气、0.1 MPa空气和1.0 MPa氧气环境下的爆炸能量,结合测试数据对试样的爆轰热、爆热和燃烧热进行理论计算。结果表明,RDX基含铝温压炸药的爆速随铝粉含量的增加而线性减小;爆热随铝粉含量的增加呈现先增大后减小的趋势,在铝粉质量分数为40%时,爆热达到最大值。试样在真空、0.1 MPa氮气、0.1 MPa空气、1.0 MPa氧气环境下的爆炸能量逐渐增加,环境压力的增大和气氛环境中氧含量的增加都会提高炸药的爆炸能量,富氧环境下的爆炸能量可以定量地表征炸药的燃烧热。样品的爆轰热占燃烧热的9.8%~26.4%,爆热占燃烧热的34.5%~50.0%,且这两个参数都随铝粉含量的增加而降低。
Abstract:
In order to study the rules of explosive energy release and the structure of explosive energy output, the detonation heat and detonation velocity of five kinds of aluminized thermobaric explosives were measured. The explosion energy of RDX-based aluminized explosive containing 30% (mass fraction) Al was measured by adiabatic detonation calori-meter under different atmosphere: vacuum, 0.1 MPa nitrogen, 0.1 MPa air and 1.0 MPa oxygen. The heat of explosion and combustion were calculated theoretically. The results show that the detonation velocity reduce linearly with the increa-sing of aluminum content. The detonation heat increases first and then decreases with the increasing of aluminum content, and the heat of explosion reaches a maximum value when the aluminum content is 40%. The explosion energy of the sample increased gradually in sequence of vacuum, 0.1 MPa nitrogen, 0.1 MPa air and 1.0 MPa oxygen; the increase of environmental pressure and oxygen content results in the increase of explosion energy. Explosion energy in oxygen-enriched environment can quantitatively characterize the combustion heat of explosives. Detonation supporting heat of the sample accounts for 9.8%-26.4% of the combustion heat, and the detonation heat accounts for 34.5%-50.0% of the combustion heat, and both of these parameters decrease with the increase of aluminum content.

参考文献/References:

[1]裴明敬, 毛根旺, 胡华权, 等. 含铝温压燃料性能研究[J]. 含能材料, 2007, 15(5): 441-446,463.
?PEI M J, MAO G W, HU H Q, et al. Characteristic of the thermobaric explosive contained aluminun powders [J]. Chinese Journal of Energetic Materials, 2007, 15(5): 441-446,463.
[2]项大林, 荣吉利, 李健, 等. 黑索今基含铝炸药的铝氧比对爆轰性能及其水下爆炸性能的影响[J]. 兵工学报, 2013, 34(1): 45-50.
XIANG D L, RONG J L, LI J, et al. Effect of Al/O ratio on detonation performance and underwater explosion of RDX-based aluminized explosive [J]. Acta Armamentarii, 2013, 34(1): 45-50.
[3]曹威, 郭向利, 段英良, 等. 不同气氛对TATB基含铝炸药爆热的影响[J]. 爆破器材, 2016, 45(2): 34-37.
CAO W, GUO X L, DUAN Y L, et al. Detonation heat of TATBbased aluminized explosive in different atmospheres [J]. Explosive Materials, 2016, 45(2): 34-37.
[4]王晓峰, 冯晓军, 肖奇. 温压炸药爆炸能量的测量方法[J]. 火炸药学报, 2013, 36(2): 9-12.
WANG X F, FENG X J, XIAO Q. Method for measuring energy of explosion of thermobaric explosives [J]. Chinese Journal of Explosives & Propellants, 2013, 36(2): 9-12.
[5]MILLER P J. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives [C]//MRS Online Proceedings Library Archive.Cambridge:Cambridge University Press, 1995(418): 413-420.
[6]KICIHSKI W, TRZCIHSKI W A. Calorimetry studies of explosion heat of non-ideal explosives [J]. Journal of Thermal Analysis and Calorimetry, 2009, 96(2): 623-630.
[7]王晓峰, 冯晓军. 温压炸药设计原则探讨[J]. 含能材料, 2016, 24(5): 418-420.
[8]韩早. 温压炸药能量参数计算与释能规律研究[D]. 南京:南京理工大学, 2015.
HAN Z. The calculation of thermal parameters and the characterization of energy release in themobaric explosions[D]. Nanjing: Nanjing University of Science & Techno-logy,2015.
[9]宁建国,王成,马天宝. 爆炸与冲击动力学[M]. 北京: 国防工业出版社, 2010: 93-94.
NING J G, WANG C, MA T B. Explosion and shock dynamics[M]. Beijing: National Defense Industry Press,2010:93-94.
[10]孙业斌, 惠君明, 曹欣茂. 军用混合炸药[M]. 北京: 兵器工业出版社, 1995: 475-477.

相似文献/References:

[1]安二峰,杨军,陈鹏万.高锰钢整铸辙叉爆炸硬化实践与研究[J].爆破器材,2009,38(02):25.
 AN Erfeng,YANG Jun,CHEN Pengwan.Study on Explosive Hardening of Hadfield Steel Rail Frogs[J].EXPLOSIVE MATERIALS,2009,38(02):25.
[2]徐森①,张兴明①,潘峰①,等.工业炸药能量测试方法的分析[J].爆破器材,2013,42(01):18.[doi:10.3969/j.issn.1001-8352.2013.01.005]
 XU Sen,ZHANG Xingming,PAN Feng,et al.Analysis on the Energy Testing Methods of Industrial Explosives[J].EXPLOSIVE MATERIALS,2013,42(02):18.[doi:10.3969/j.issn.1001-8352.2013.01.005]
[3]臧立伟,尹建平,王志军.轴向预制破片战斗部的设计研究[J].爆破器材,2013,42(02):5.[doi:10.3969/j.issn.1001-8352.2013.02.002]
 ZANG liwei,YIN Jianping,WANG Zhijun.Optimizing Design of Axial Prefabricated Fragments[J].EXPLOSIVE MATERIALS,2013,42(02):5.[doi:10.3969/j.issn.1001-8352.2013.02.002]
[4]姚志华,李德战,付庆海,等.偏心亚半球成型装药结构的数值模拟[J].爆破器材,2013,42(02):17.[doi:10.3969/j.issn.1001-8352.2013.02.005]
 YAO Zhihua,LI Dezhan,FU Qinghai,et al.Numerical Simulation of Shape Charge with an Eccentric Subhemisphere Liner[J].EXPLOSIVE MATERIALS,2013,42(02):17.[doi:10.3969/j.issn.1001-8352.2013.02.005]
[5]杨亚东,李向东,王晓鸣.爆炸冲击波空中传播特征参量的优化拟合[J].爆破器材,2014,43(01):13.[doi:10.3969/j.issn.1001-8352.2014.01.003]
 YANG Yadong,LI Xiangdong,WANG Xiaoming.Optimum Fitting for Characteristic Parameters of Blast Shockwaves Traveling in Air[J].EXPLOSIVE MATERIALS,2014,43(02):13.[doi:10.3969/j.issn.1001-8352.2014.01.003]
[6]金朋刚,郭炜,任松涛,等.TNT密闭环境中能量释放特性研究[J].爆破器材,2014,43(02):10.[doi:10.3969/j.issn.1001-8352.2014.02.003]
 JIN Penggang,GUO Wei,REN Songtao,et al.Research on TNT Energy Release Characteristics in Enclosed Condition[J].EXPLOSIVE MATERIALS,2014,43(02):10.[doi:10.3969/j.issn.1001-8352.2014.02.003]
[7]冯海云,胡宏伟,赵向军,等.一种评估炸药作功能力的新测试方法[J].爆破器材,2014,43(02):33.[doi:10.3969/j.issn.1001-8352.2014.02.008]
 FENG Haiyun,HU Hongwei,ZHAO Xiangjun,et al.A New Test Method to Assess the Acting Ability of Explosive[J].EXPLOSIVE MATERIALS,2014,43(02):33.[doi:10.3969/j.issn.1001-8352.2014.02.008]
[8]郑思友,翟廷海,夏斌.工业雷管抗弯性能试验装置与方法设计[J].爆破器材,2014,43(03):33.[doi:10.3969/j.issn.1001-8352.2014.03.008]
 ZHENG Siyou,ZHAI Tinghai,XIA Bin.Testing System and Method Design of the Bending Resistance of Industrial Detonator[J].EXPLOSIVE MATERIALS,2014,43(02):33.[doi:10.3969/j.issn.1001-8352.2014.03.008]
[9]杨斐,王建灵,罗一鸣,等.DNTF/AP/Al体系炸药的能量特性分析[J].爆破器材,2014,43(05):11.[doi:10.3969/j.issn.1001-8352.2014.05.003]
 YANG Fei,WANG Jianling,LUO Yiming,et al.Explosion Energy Characteristics of DNTF/AP/Al Explosive[J].EXPLOSIVE MATERIALS,2014,43(02):11.[doi:10.3969/j.issn.1001-8352.2014.05.003]
[10]沈飞,王辉,余然,等.两种含铝炸药水中近场冲击波传播规律研究[J].爆破器材,2014,43(05):26.[doi:10.3969/j.issn.1001-8352.2014.05.006]
 SHEN Fei,WANG Hui,YU Ran,et al.Propagation Characteristics of Close-field Shock Wave for Two Aluminized Explosives by Underwater Explosion[J].EXPLOSIVE MATERIALS,2014,43(02):26.[doi:10.3969/j.issn.1001-8352.2014.05.006]

备注/Memo

备注/Memo:
收稿日期:2018-12-26
第一作者:杨胜晖(1995- ),男,硕士研究生,主要从事爆炸力学的研究。E-mail:1041415811@qq.com
通信作者:郑波(1960- ),男,博士,研究员,主要从事爆炸力学的研究。E-mail:zhengbo@bit.edu.cn
更新日期/Last Update: 2019-04-01