[1]ZHANG Wenjing①,XUE Chuang①,WANG Guixiang①,等.Theoretical Prediction of Infrared Spectra and Thermodynamic Properties of Glyceryl Nitrates[J].爆破器材,2018,47(06):21-26.[doi:10.3969/j.issn.1001-8352.2018.06.004]
 ,,et al.甘油硝酸酯类化合物红外光谱和热力学性质的理论研究[J].EXPLOSIVE MATERIALS,2018,47(06):21-26.[doi:10.3969/j.issn.1001-8352.2018.06.004]
点击复制

Theoretical Prediction of Infrared Spectra and Thermodynamic Properties of Glyceryl Nitrates()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
47
期数:
2018年06
页码:
21-26
栏目:
基础理论
出版日期:
2018-11-27

文章信息/Info

Title:
甘油硝酸酯类化合物红外光谱和热力学性质的理论研究
文章编号:
5273
作者:
ZHANG Wenjing XUE Chuang WANG Guixiang GAO Pin
①School of Chemical Engineering,Nanjing University of Science and Technology(Jiangsu Nanjing,210094)
②National Quality Supervision and Inspection Center for Industrial Explosive Materials(Jiangsu Nanjing,210094)
Author(s):
张文静薛闯王桂香高贫
①南京理工大学化工学院 (江苏南京,210094)
②国家民用爆破器材质量监督检验中心 (江苏南京,210094)
关键词:
glyceryl nitrates IR spectra thermodynamic properties density functional theory
Keywords:
甘油硝酸酯红外光谱热力学性质密度泛函理论
分类号:
TQ560.71;O64
DOI:
10.3969/j.issn.1001-8352.2018.06.004
文献标志码:
A
摘要:
Glyceryl nitrates are one type of compounds with wide applications in military, medicine, etc. In this study, 6 glyceryl nitrates including NG, DGTN, DGPN, DGHN, TriGPN, and TetraGHN were investigated at the B3LYP/6-31G* level of density functional theory. The infrared spectra were obtained and assigned. The frequencies scaled by a factor of 0.96 were then used to calculate the thermodynamic properties based on the principle of statistic thermodynamics. The thermodynamic properties are correlated with the number of —ONO2 and —CH2—O—CH2—CH(ONO2)— groups in a linear manner, obviously showing a good group additivity character.
Abstract:
甘油硝酸酯类化合物广泛应用在军事、医学等方面。用密度泛函理论方法,在B3LYP/6-31G*水平下,对NG、DGTN、DGPN、DGHN、TriGPN和TetraGHN 6种甘油硝酸酯类化合物进行了研究,获得它们的红外光谱并作归属。对谐振频率以0.96进行标度,基于统计热力学原理,计算了它们的热力学性质。热力学性质与硝酸酯基和—CH2—O—CH2—CH(ONO2)—基之间具有线性关系,表现出很好的基团加和性。

参考文献/References:

[1]ZHENG J, HOU L F, YANG Z X. The progress and prospects of high energy propellants[J]. Journal of Solid Rocket Technology, 2001, 24(1): 28-34.
郑剑,侯林法,杨仲雄.高能固体推进剂技术回顾与展望[J].固体火箭技术,2001, 24(1): 28-34.
[2]PANG A M, ZHENG J. Prospect of the research and development of high energy solid propellant technology[J]. Journal of Solid Rocket Technology, 2004, 27(4): 289-293.
庞爱民,郑剑.高能固体推进剂技术未来发展展望[J].固体火箭技术,2004, 27(4): 289-293.
[3]BUSZEK R J, SOTO D, DAILEY J M, et al. Structures and binding energies of nitrate plasticizers DEGDN, TEGDN, and nitroglycerine[J]. Propellants, Explosives, Pyrotechics, 2018, 43(2): 115-121.
[4]BRAND J C D, CAWTHON T M. The vibrational spectrum of methyl nitrate[J]. Journal of the American Chemical Society, 1955, 77: 319-323.
[5]WARING C E, KRASTINS G. Kinetics and mechanism of the thermal decomposition of nitroglycerin[J]. The Journal of Physical Chemistry, 1970, 74(5): 999-1006.
[6]LI G W. Study on the explosion properties of nitrate plasticized high energy propellant [J]. Journal of Solid Rocket Technology, 2000, 23(3): 44-48.
李广武.硝酸酯增塑高能推进剂爆炸性能研究[J].固体火箭技术,2000, 23(3): 44-48.
[7]WANG Q F, SHI F, MI Z T, et al. Review on green synthesis of nitrate esters[J]. Chinese Journal of Energetic Materials, 2007, 15(4): 416-420.
王庆法,石飞,米镇涛,等.硝酸酯的绿色合成[J].含能材料,2007, 15(4): 416-420.
[8]SONG X L, WANG Y, WANG J Y, et al. Synthesis, characterization of 1,2,3,4-erythrityl tetranitrate[J]. Chinese Journal of Energetic Materials, 2014, 22(4): 458-461.
宋小兰,王毅,王晶禹,等. 1,2,3,4-丁四醇四硝酸酯的合成、表征和性能[J].含能材料,2014, 22(4): 458-461.
[9]DING L, ZHENG C M, ZHAI G H, et al. Interaction of stability and nitric acid ester (NG-NC) of propellant[J]. Journal of Solid Rocket Technology, 2014, 37(4): 525-529.
丁黎,郑朝民,翟高红,等.推进剂安定剂与硝酸酯(NG-NC)相互作用研究[J].固体火箭技术,2014, 37(4): 525-529.
[10]WANG D X, XIAO H M, LI S S. Quantum mechanical and molecular mechanical studies of the hydrolysis of methyl nitrate and the solvent effect[J]. Journal of Physical Organic Chemistry, 1992, 5(6): 361-366.
[11]AKUTSU Y, CHE R H, TAMURA M. Calculations of heats of formation for nitramines and alkyl nitrates with PM3 and MM2[J]. Journal of Energetic Materials, 1993, 11(3): 195-203.
[12]GONG X D, XIAO H M. Ab initio studies of molecular geometries, electronic structures and infrared spectra of the substituted derivatives of methyl nitrate[J]. Journal of Molecular Structure: THEOCHEM, 1999, 488(1/2/3): 179-185.
[13]GONG X D, XIAO H M. Ab initio and density functional methods studies on the conformations and thermodynamic properties of propyl nitrate[J]. Journal of Molecular Structure: THEOCHEM, 2000, 498(1/2/3): 181-190.
[14]BUNTE S W, SUN H. Molecular modeling of energetic materials:the parameterization and validation of nitrate esters in the COMPASS force field[J]. The Journal of Physical Chemistry B, 2000, 104(11): 2477-2489.
[15]GONG X D, XIAO H M. Studies on the molecular structures, vibrational spectra and thermodynamic properties of organic nitrates using density functional theory and ab initio methods[J]. Journal of Molecular Structure: THEOCHEM,2001, 572(1/2/3): 213-221.
[16]TURKER L, ERKOCS. Density functional theory calculations for [C2H4N2O6(n) (n=0,+1,-1)[J]. Journal of Hazardous Materials, 2006, 136(2): 164-169.
[17]ZENG X L, CHEN W H, LIU J C, et al. A theoretical study of five nitrates: electronic structure and bond dissociation energies[J]. Journal of Molecular Structure: THEOCHEM, 2007, 810(1/2/3): 47-51.
[18]LI M M, WANG G X, GUO X D, et al. Theoretical study on the structures, thermodynamic properties, detonation properties,and pyrolysis mechanisms of four trinitrate esters[J]. Journal of Molecular Structure: THEOCHEM, 2009, 900(1/2/3): 90-95.
[19]MIN B S, PARK Y C. A study on the aliphatic energetic plasticizers containing nitrate ester and nitramine[J].Journal of Industrial and Engineering Chemistry, 2009, 15(4): 595-601.
[20]WANG G X, GONG X D, DU H C, et al. Theoretical prediction of properties of aliphatic polynitrates[J]. The Journal of Physical Chemistry A, 2011, 115(5): 795-804.
[21]LIU D M, XIAO J J, ZHU W. Sensitivity criterion and mechanical properties prediction of PETN crystals at different temperatures by molecular dynamics simulation[J]. Chinese Journal of Energetic Materials, 2013, 21(5): 563-569.
刘冬梅,肖继军,朱伟.不同温度下PETN晶体感度判别和力学性能预测的MD研究[J].含能材料,2013, 21(5): 563-569.
[22]LIU Y, GONG X D, WANG G X, et al. Vibrational and thermodynamic properties of 2,2’,4,4’,6,6’-hexanitroazobenzene and its derivatives: a density functional theory study[J]. Chinese Journal of Chemistry, 2010, 28(2): 149-158.
[23]XIAO H M, XU X J, QIU L. Theoretical design of high energy density materials[M]. Beijing: Science Press, 2008.
肖鹤鸣,许晓娟,邱玲.高能量密度材料的理论设计[M].北京:科学出版社,2008.
[24]LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789.
[25]BECKE A D. Density-functional thermochemistry:II. The effect of the Perdew-Wang generalized-gradient correlation correction[J]. The Journal of Chemical Physics, 1992, 97(12): 9173-9177.
[26]HARIHARAN P C, POPLE J A. The influence of polarization functions on molecular orbital hydrogenation energies[J]. Theoretica Chemica Acta, 1973, 28(3): 213-222.
[27]SCOTT A P, RADOM L. Harmonic vibrational frequencies: an evaluation of Hartree-Fock, MΦller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors[J]. The Journal of Physical Chemistry, 1996, 100(41): 16502-16513.
[28]HILL T L.Introduction to statistic thermodynamics[M]. New York:Addison-Wesley, 1960.

备注/Memo

备注/Memo:
收稿日期:2018-06-26
基金项目:国家自然科学基金(21403110)
作者简介:张文静(1993-),女,硕士研究生,主要从事有机含能化合物的理论研究。E-mail:523538001@qq.com
通信作者:王桂香(1978-),女,副教授,主要从事含能材料的理论计算研究。E-mail: wanggx1028@163.com
更新日期/Last Update: 2018-11-26