[1]葛安然,杨森,何中其.高压电缆中间接头防爆壳的内爆炸动力响应[J].爆破器材,2018,47(06):27-33.[doi:10.3969/j.issn.1001-8352.2018.06.005]
 GE Anran,YANG Sen,HE Zhongqi.Dynamic Response on Internal Explosion of Explosion-proof Shell for High-voltage Cable Middle Joint[J].EXPLOSIVE MATERIALS,2018,47(06):27-33.[doi:10.3969/j.issn.1001-8352.2018.06.005]
点击复制

高压电缆中间接头防爆壳的内爆炸动力响应()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
47
期数:
2018年06
页码:
27-33
栏目:
基础理论
出版日期:
2018-11-27

文章信息/Info

Title:
Dynamic Response on Internal Explosion of Explosion-proof Shell for High-voltage Cable Middle Joint
文章编号:
5272
作者:
葛安然杨森何中其
南京理工大学化工学院(江苏南京,210094)
Author(s):
GE AnranYANG Sen HE Zhongqi
School of Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
内爆炸动力响应AUTODYN高压电缆中间接头防爆壳
Keywords:
internal explosion dynamic response AUTODYN high-voltage cable middle joint explosion-proof shell
分类号:
O383+.3
DOI:
10.3969/j.issn.1001-8352.2018.06.005
文献标志码:
A
摘要:
应用显式动力学软件AUTODYN建立了高压电缆中间接头防爆壳内爆炸的计算模型,对爆炸过程的壳体动力响应进行了数值模拟和定性、定量分析。结果表明:随着距爆心环面距离的增加,壳外壁动力响应参数(位移、速度、应变、应力)峰值在防爆壳主体部分均呈下降趋势,到了变截面体部分,由于能量的汇聚,参数值又开始慢慢回升,进入端部则大幅度上升,并在封头中心处达到最大;爆心环面、端部和封头中心是壳体最薄弱的部位,加强这3处及封头与端部连接处的保护是达到整体防爆的关键;壳体变形程度随着爆炸能量的增加近似线性变大,随着壳体厚度增加逐渐变小,且当爆炸能量不变时,厚度增加到5 mm后,其对壳体变形的影响不再明显,因此壳体厚度以5 mm为宜;增加整体径向直径、减小变截面体与轴向的夹角以及选用椭球封头更有利于壳体防爆。
Abstract:
Explicit dynamics software AUTODYN was used to establish the calculation model for an explosion-proof shell for high-voltage cable joint experiencing internal explosion. Numerical simulation and qualitative or quantitative analysis were carried out on the dynamic response from the shell during the explosion process. The results show that with the increase of the distance away from the explosion center torus, dynamic response parameters of the outer wall (displacement, velocity, strain, and stress) decrease in the main section of the explosion-proof shell. They were observed to increase slowly due to convergence of energy at the variable section, rise dramatically when approaching the end section, and reach the maximum at the head center. The explosion center torus, end section and head center are confirmed as the weakest part of the shell. Strengthening the protection of these three locations and connection between the head and end sections is the key to achieve the overall explosion-proof capacity. Shell deformation increases linearly with the increase of explosive energy, and gradually decreases with the increase of shell thickness until insusceptible at the thickness of 5 mm and constant explosion energy. The preferred shell thickness is 5 mm. Increasing the overall radial diameter, reducing the angle between variable section and axial direction, and selecting the ellipsoidal head are more conducive to the explosion-proof of the shell.

参考文献/References:

[1]曹洵铖.高压超高压电力电缆技术的应用[J]. 科技资讯,2016,14(36):50-51.
[2]张承信,李强,韩夏清.一种新型电缆防火防爆盒的研制[J]. 华东电力,2013,41(7):1526-1528.
?ZHANG C X,LI Q,HAN X Q.Development of a new type of cable fire and explosion prevention box[J].East China Electric Power,2013,41(7): 1526-1528.
[3]唐炬,龚宁涛,李伟,等.高压交联聚乙烯电缆附件局部放电特性分析[J].重庆大学学报(自然科学版),2009, 32(5):528-534.
TANG J, GONG N T, LI W, et al. Characteristic analysis of partial discharge in high-voltage XLPE cable accessories[J]. Journal of Chongqing University(Natural Science Edition), 2009,32(5): 528-534.
[4]刘庆明,汪建平,李磊,等.电火花放电能量及其损耗的计算[J]. 高电压技术,2014,40(4):1255-1260.
?LIU Q M, WANG J P, LI L, et al. Calculation of electric spark discharge energy and its energy loss[J].High Voltage Engineering, 2014, 40(4): 1255-1260.
[5]ZAPATA B J,WEGGEL D C.Collapse study of an unreinforced masonry bearing wall building subjected to internal blast loading[J]. Journal of Performance of Constructed Facilities, 2008,22(2): 92-100.
[6]BAKER W E.爆炸危险性及其评估[M].张国顺,文以民,刘宝吉,译.北京:群众出版社,1988.
[7]DUFFEY T, KRIEG R. The effects of strain-hardening and strainrate sensitivity on the transient response of elastic plastic rings and cylinders[J]. International Journal of Mechanical Sciences, 1969,11(10):825-844.
[8]SYRUNIN M A, FEDORENKO A G, IVANOV A G. Dynamic strength of cylindrical fiberglass shells under multiple explosive loading[J]. Combustion, Explosion & Shock Waves, 1997,33(6):713-717.
[9]HU Y,WU C,LUKASZEWICZ M, et al. Characteristics of confined blast loading in unvented structures[J]. International Journal of Protective Structure, 2011,2(1):21-43.
[10]WU C, LUKASZEWICZ M, SCHEBELLA K, et al. Experimental and numerical investigation of confined explosion in a blast chamber[J]. Journal of Loss Prevention in the Process Industries,2013,26(4): 737-750.
[11]柏小娜,李向东,杨亚东.封闭空间内爆炸冲击波超压计算模型及分布特性研究[J]. 爆破器材,2015,44(3):22-26.
?BAI X N,LI X D, YANG Y D. Calculation model and the distribution of wave pressure under internal explosion in closed space[J]. Explosive Materials, 2015,44(3):22-26.
[12]RUSHTON N,SCHLEYER G K, CLAYTON A M, et al. Internal explosive loading of steel pipes[J]. ThinWalled Structures,2008,46(7/8/9):870-877.
[13]LANGDON G S, OZINSKY A ,YUEN S C K. The response of partially confined right circular stainless steel cylinders to internal air-blast loading[J]. International Journal of Impact Engineering, 2014,73(2):1-14.
[14]石少卿,汪敏,孙波,等.AUTODYN工程动力学分析及应用实例[M].北京:中国建筑工业出版社,2011.
[15]秦学军,张德志,杨军,等.内部爆炸作用下钢筒变形过程的电探针测量技术[J]. 爆炸与冲击,2014,34(1):115-119.
?QIN X J, ZHANG D Z, YANG J,et al. Electric probe measurement technique on deformation process of cylindrical steel shell under inside-explosion loading[J]. Explosion and Shock Waves, 2014,34(1):115-119.
[16]秦学军,张德志,杨军,等.内部爆炸作用下钢筒塑性变形研究[J]. 兵工学报,2014(增2): 135-138.
?QIN X J, ZHANG D Z, YANG J,et al. Research on plastic deformation of cylindrical steel shells under internal explosion loading[J]. Acta Armamentarii, 2014(Supple.2):135-138.
[17]李星星.304不锈钢本构模型参数识别研究[D].武汉:华中科技大学,2012.
?LI X X. Research on the constitutive model parameters identification of 304 stainless steel[D]. Wuhan: Huazhong University of Science and Technology,2012.

相似文献/References:

[1]连赟猛①,方道红②,顾晓辉①,等.典型密闭装置内爆炸尺寸效应研究[J].爆破器材,2012,41(05):1.
 LIAN Yunmeng,FANG Daohong,GU Xiaohui,et al.Effect of Scales on Typical Closed Structure Due to Internal Explosion[J].EXPLOSIVE MATERIALS,2012,41(06):1.
[2]柏小娜,李向东,杨亚东.封闭空间内爆炸冲击波超压计算模型及分布特性研究[J].爆破器材,2015,44(03):22.[doi:10.3969/j.issn.1001-8352.2015.03.005]
 BAI Xiaona,LI Xiangdong,YANG Yadong.Calculation Model and the Distribution of Wave Pressure under Internal Explosion in Closed Space[J].EXPLOSIVE MATERIALS,2015,44(06):22.[doi:10.3969/j.issn.1001-8352.2015.03.005]

备注/Memo

备注/Memo:
收稿日期:2018-06-25
作者简介:葛安然(1993-),男,硕士,主要从事爆炸安全防护研究。E-mail:1046813711@qq.com
通信作者:何中其(1978-),男,博士,讲师,主要从事爆炸作用及应用、安全技术工程研究。E-mail: hzq555@163.com
更新日期/Last Update: 2018-11-27