[1]冯凇,饶国宁,彭金华.含铝炸药深水爆炸冲击波和气泡脉动的数值模拟[J].爆破器材,2017,46(05):1-7.[doi:10.3969/j.issn.1001-8352.2017.05.001]
 FENG Song,RAO Guoning,PENG Jinhua.Numerical Simulation of Shock Wave and Bubble Pulse in Deep Water Explosion of Aluminized Explosive[J].EXPLOSIVE MATERIALS,2017,46(05):1-7.[doi:10.3969/j.issn.1001-8352.2017.05.001]
点击复制

含铝炸药深水爆炸冲击波和气泡脉动的数值模拟()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
46
期数:
2017年05
页码:
1-7
栏目:
基础理论
出版日期:
2017-09-25

文章信息/Info

Title:
Numerical Simulation of Shock Wave and Bubble Pulse in Deep Water Explosion of Aluminized Explosive
文章编号:
5175
作者:
冯凇饶国宁彭金华
南京理工大学化工学院(江苏南京,210094)
Author(s):
FENG Song RAO Guoning PENG Jinhua
School of Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
含铝炸药深水爆炸峰值压力气泡周期气泡半径相似律
Keywords:
aluminized explosive deep water explosion peak pressure bubble period bubble radius similarity law
分类号:
TQ560.7;O382+.1
DOI:
10.3969/j.issn.1001-8352.2017.05.001
文献标志码:
A
摘要:
为了研究CL-20基和HMX基及其含铝炸药深水爆炸过程,选取LX-14、LX-19、PAX-30和PAX-29 4种炸药,采用AUTODYN数值计算软件,计算其深水爆炸过程的各项参数。计算结果表明:CL-20基炸药水下爆炸性能优于HMX基炸药;铝粉的加入可以大幅度提高冲击波峰值压力、气泡脉动周期及气泡最大半径,而二次压力波峰值压力略有降低。计算TNT深水爆炸过程的参数,并与试验值相对比,误差小于5%,说明球对称一维方法可以很好地模拟炸药深水爆炸过程。最后,计算得到4种炸药的峰值压力均符合水下爆炸相似律,拟合得到4种炸药峰值压力相似常数。
Abstract:
To investigate the deep water explosion of CL-20-based aluminized explosive and HMX-based aluminized explosive, four typical kinds of explosives (LX-14, LX-19, PAX-30 and PAX-29) were selected for simulation of the explosion parameters using AUTODYN. The results show that the deep water explosion performance of CL-20-based explosives is better than that of HMXbased explosives. The peak pressure of shock wave, bubble pulsation period and maximum radius of the bubble can be greatly improved by addition of aluminum powder, while the peak pressure of the first bubble pulse decreases slightly. Variables of TNT in deep water explosion were calculated and compared with the experimental results. The error is less than 5%, which suggests that the one-dimensional method of spherical symmetry can be applied to assess the process of deep water explosion for explosives. Finally, the peak pressure of four kinds of explosives were derived according to the similarity law of underwater explosion, and the peak pressure similarity constants of the four kinds of explosives are fitted.

参考文献/References:

[1]张驽,于馨.水下爆炸冲击波与气泡载荷作用下船体结构的动响应[J].中国舰船研究,2014,9(1):99-104.
 ZHANG N,YU X.Dynamic response of a hull structure subjected to underwater explosion shock wave and bubbles[J].Chinese Journal of Ship Research,2014,9(1):99-104.
[2]闫伟杰.水下爆炸数值模拟研究[D].长沙:国防科学技术大学,2007.
 YAN W J.Numerical simulation of underwater explosion[D].Changsha:National University of Defense Technology,2007.
[3]COLE R H, WELLER R. Underwater explosions[J]. Physics Today, 1948, 1(6): 35.
[4]汪斌, 张远平, 王彦平. 水中爆炸气泡脉动现象的实验研究[J]. 爆炸与冲击, 2008, 28(6): 572-576.
WANG B, ZHANG Y P, WANG Y P. Experimental study on bubble oscillation formed during underwater explosions[J]. Explosion and Shock Waves, 2008, 28(6): 572-576.
[5]周霖, 徐更光.含铝炸药水中爆炸能量输出结构[J].火炸药学报, 2003 , 26(1):30-32,36.
ZHOU L, XU G G. Configuration of underwater energy output for aluminized explosive mixtures[J]. Chinese Journal of Explosive & Propellants, 2003, 26(1):30-32,36.
[6]胡宏伟, 严家佳, 陈朗, 等. 铝粉含量和粒度对 CL-20 含铝炸药水中爆炸反应特性的影响[J]. 爆炸与冲击, 2017, 37(1): 157-161.
HU H W, YAN J J, CHEN L, et al. Effect of aluminum powder content and its particle size on reaction charac teristics for underwater explosion of CL-20-based explosives containing aluminum[J]. Explosion and Shock Waves, 2017, 37(1): 157-161.
[7]封雪松, 田轩, 冯博, 等. 纳米铝粉对炸药水下爆炸能量的影响研究[J]. 爆破器材, 2016, 45(3): 1-4.
FENG X S, TIAN X, FENG B, et al. Effect of nanoaluminum on the under-water detonation energy of explosive[J]. Explosive Materials, 2016, 45(3): 1-4.
[8]任新联, 王辉, 徐司雨, 等. 铝粉粒度对 RDX 基含铝炸药水中爆炸近场特性的影响[J]. 爆破器材, 2015, 44(6): 29-33.
REN X L, WANG H, XU S Y, et al. The effect of aluminum particle size on the characteristic of RDX based aluminized explosives underwater close-filed explosion[J]. Explosive Materials, 2015, 44(6): 29-33.
[9]辛春亮,徐更光,刘科种,等.含铝炸药 Miller 能量释放模型的应用[J].含能材料,2008,16(4):436-440.
XIN C L,XU G G,LIU K Z,et al.Application of Miller energy release model for aluminized explosive[J].Chinese Journal of Energetic Materials,2008,16(4):436-440.
[10]肖秋平, 陈网桦, 贾宪振, 等. 基于 AUTODYN 的水下爆炸冲击波模拟研究[J]. 舰船科学技术, 2009, 31(2): 38-43.
XIAO Q P, CHEN W H, JIA X Z, et al. Numerical study of underwater explosion shock wave based on AUTODYN[J]. Ship Science and Technology, 2009, 31(2): 38-43. 
[11]刘科种, 徐更光, 辛春亮, 等. AUTODYN 水下爆炸数值模拟研究[J]. 爆破, 2009,26(3): 18-21.
LIU K Z, XU G G, XIN C L, et al. Research on numerical simulation in underwater explosion by AUTODYN[J]. Blasting, 2009,26(3): 18-21.
[12]贾宪振,王建灵,高赞,等.有限水域水中爆炸气泡脉动的数值模拟[J].舰船科学技术,2015,37(8):31-34.
JIA X Z, WANG J L, GAO Z, et al. Numerical simulation of bubble pulse of underwater explosion in confined water area[J]. Ship Science and Technology, 2015,37(8): 31-34.
[13]辛春亮, 徐更光, 刘科种, 等. 含铝炸药与理想炸药能量输出结构的数值模拟[J]. 火炸药学报, 2007, 30(4): 6-8.
XIN C L, XU G G, LIU K Z, et al. Numerical simulation of energy output structure for aluminized explosive and idealized explosive in underwater explosion[J]. Chinese Journal of Explosive & Propellants, 2007, 30(4): 6-8.
[14]胡毅亭, 贾宪振, 饶国宁, 等. 水下爆炸冲击波和气泡脉动的数值模拟研究[J]. 舰船科学技术, 2009, 31(2): 134-140.
 HU Y T, JIA X Z, RAO G N, et al. Numerical study of underwater explosion shock wave and bubble pulse[J]. Ship Science and Technology, 2009, 31(2): 134-140.
[15]COWPERTHWAITE M,PASTINE D J,ENIG J W.Energetic of late chemical recations in nonideal underwater detonations:Phase 1, preliminary theoretical model development:N00014-95-C-0154[R]. US,Office of Naval Research,1995.
[16]周建美.爆炸容器内炸药装药爆炸温度场的数值研究[D].南京:南京理工大学,2013.
ZHOU J M.Numerical study on explosion temperature fields of explosive charges in explosion vessel[D].Nanjing:Nanjing University of Science and Technology,2013.
[17]逄春京.水下爆炸气泡动过程的数值模拟研究[D].长沙:国防科学技术大学,2008.
PANG C J. Numerical simulation of bubble pulsation produced by underwater explosion[D]. Changsha: National University of Defense Technology,2008.
[18]COOK M A,FILLER A S, KEYES R T,et al.Aluminized explosives[J].The Journal of Physical Chemistry,1957,61(2):189-196.
[19]SWISDAK M M,Jr. Explosion effects and properties: Part II. Explosion effects in water:NSWC/NOLTR76-116[R]. Naval Surface Weapons Center Technical Report, 1978.
[20]肖秋平. 水下爆炸过程及浅水效应数值模拟研究[D]. 南京: 南京理工大学, 2008.

相似文献/References:

[1]李静,王伯良,赵新颖,等.高含铝炸药爆炸过程中的能量分析[J].爆破器材,2013,42(02):10.[doi:10.3969/j.issn.1001-8352.2013.02.003]
 LI Jing,WANG Boliang,ZHAO Xinying,et al.Energy Analysis in the Explosion Process of High Aluminized Explosive[J].EXPLOSIVE MATERIALS,2013,42(05):10.[doi:10.3969/j.issn.1001-8352.2013.02.003]
[2]李媛媛,徐洪涛.密闭环境下含铝炸药爆炸场温度与压力特征[J].爆破器材,2014,43(02):1.[doi:10.3969/j.issn.1001-8352.2014.02.001]
 LI Yuanyuan,XU Hongtao.Characteristics of Blasting Temperature and Pressure of Aluminized Explosive in Confined Conditions[J].EXPLOSIVE MATERIALS,2014,43(05):1.[doi:10.3969/j.issn.1001-8352.2014.02.001]
[3]冯博,王晓峰,冯晓军,等.黏结剂含量对含铝炸药燃烧能量的影响[J].爆破器材,2014,43(04):37.[doi:10.3969/j.issn.1001-8352.2014.04.008]
 FENG Bo,WANG Xiaofeng,FENG Xiaojun,et al.Effect of Binder Content on the Combustion Energy of Aluminized Explosives[J].EXPLOSIVE MATERIALS,2014,43(05):37.[doi:10.3969/j.issn.1001-8352.2014.04.008]
[4]沈飞,王辉,余然,等.两种含铝炸药水中近场冲击波传播规律研究[J].爆破器材,2014,43(05):26.[doi:10.3969/j.issn.1001-8352.2014.05.006]
 SHEN Fei,WANG Hui,YU Ran,et al.Propagation Characteristics of Close-field Shock Wave for Two Aluminized Explosives by Underwater Explosion[J].EXPLOSIVE MATERIALS,2014,43(05):26.[doi:10.3969/j.issn.1001-8352.2014.05.006]
[5]夏博文,魏亚杰,饶国宁,等.含铝炸药爆炸作用下的水中圆柱壳动态响应数值研究[J].爆破器材,2014,43(06):1.[doi:10.3969/j.issn.1001-8352.2014.06.001]
 XIA Bowen,WEI Yajie,RAO Guoning,et al.Dynamic Response of Underwater Cylindrical Shells Subjected to Blast Loads of Aluminized Explosives[J].EXPLOSIVE MATERIALS,2014,43(05):1.[doi:10.3969/j.issn.1001-8352.2014.06.001]
[6]郑亚峰,南海,席鹏,等.不同比例Al-RDX混合炸药的热分解活化能研究[J].爆破器材,2015,44(05):13.[doi:10.3969/j.issn.1001-8352.2015.05.004]
 ZHENG Yafeng,NAN Hai,XI Peng,et al.Research of Thermal Decomposition Activation Energy on Al-RDX Hybrid Explosives with Different Components Ratio[J].EXPLOSIVE MATERIALS,2015,44(05):13.[doi:10.3969/j.issn.1001-8352.2015.05.004]
[7]陈愿①,陈相②,蒋伟②,等.硼含量对含铝炸药水下爆炸能量的影响[J].爆破器材,2015,44(06):1.[doi:10.3969/j.issn.1001-8352.2015.06.001]
 CHEN Yuan,CHEN Xiang,JIANG Wei,et al.Influence of Boron Content on Underwater Explosion Energy of Aluminized Explosive[J].EXPLOSIVE MATERIALS,2015,44(05):1.[doi:10.3969/j.issn.1001-8352.2015.06.001]
[8]姚李娜①,王彩玲①,赵省向①,等.重结晶对DNTF形貌和含铝炸药爆轰性能的影响[J].爆破器材,2015,44(06):25.[doi:10.3969/j.issn.1001-8352.2015.06.006]
 YAO Lina,WANG Cailing,ZHAO Shengxiang,et al.Influences of Recrystallization on the Morphology of DNTF and Detonation Performance of Aluminized Explosive[J].EXPLOSIVE MATERIALS,2015,44(05):25.[doi:10.3969/j.issn.1001-8352.2015.06.006]
[9]任新联,王辉,徐司雨,等.铝粉粒度对RDX基含铝炸药水中爆炸近场特性的影响[J].爆破器材,2015,44(06):29.[doi:10.3969/j.issn.1001-8352.2015.06.007]
 REN Xinlian,WANG Hui,XU Siyu,et al.The Effect of Aluminum Particle Size on the Characteristic of RDX Based Aluminized Explosives Underwater Close-filed Explosion[J].EXPLOSIVE MATERIALS,2015,44(05):29.[doi:10.3969/j.issn.1001-8352.2015.06.007]
[10]封雪松,田轩,冯博,等.纳米铝粉对炸药水下爆炸能量的影响研究[J].爆破器材,2016,45(03):1.[doi:10.3969/j.issn.1001-8352.2016.03.001]
 FENG Xuesong,TIAN Xuan,FENG Bo,et al.Effect of Nano-aluminum on the Under-water Detonation Energy of Explosive[J].EXPLOSIVE MATERIALS,2016,45(05):1.[doi:10.3969/j.issn.1001-8352.2016.03.001]

备注/Memo

备注/Memo:
收稿日期:2017-05-11
基金项目:国家青年科学基金(11102091);高等学校博士学科点专项科研博导类基金(20113219110010)
作者简介:冯凇(1989-),男,博士,主要从事含铝炸药水下爆炸研究。E-mail:fs8500@126.com
通信作者:饶国宁(1978-),男,硕导,主要从事爆炸力学研究。E-mail:njraoguoning@163.com
更新日期/Last Update: 2017-09-25