[1]李偲①,王桂香①,高贫②.季戊四醇四硝酸酯及其五氟硫基衍生物性能的理论研究[J].爆破器材,2017,46(02):1-5,10.[doi:10.3969/j.issn.1001-8352.2017.02.001]
 LI Cai,WANG Guixiang,GAO Pin.Theoretical Study on Performances of Pentaerythritol Tetranitrate and Its Pentafluorosulfanyl Derivatives[J].EXPLOSIVE MATERIALS,2017,46(02):1-5,10.[doi:10.3969/j.issn.1001-8352.2017.02.001]
点击复制

季戊四醇四硝酸酯及其五氟硫基衍生物性能的理论研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
46
期数:
2017年02
页码:
1-5,10
栏目:
基础理论
出版日期:
2017-03-21

文章信息/Info

Title:
Theoretical Study on Performances of Pentaerythritol Tetranitrate and Its Pentafluorosulfanyl Derivatives
文章编号:
5121
作者:
李偲王桂香高贫
①南京理工大学化工学院(江苏南京,210094)
②国家民用爆破器材质量监督检验中心(江苏南京,210094)
Author(s):
LI Cai WANG Guixiang GAO Pin
①School of Chemical Engineering, Nanjing University of Science and Technology(Jiangsu Nanjing, 210094)
②National Quality Supervision and Inspection Center for Industrial Explosive Materials (Jiangsu Nanjing, 210094)
关键词:
季戊四醇五氟硫基硝酸酯爆轰性能热力学性能
Keywords:
pentaerythritol pentafluorosulfanyl nitrate detonation performance thermodynamic property
分类号:
TQ560.71;O64
DOI:
10.3969/j.issn.1001-8352.2017.02.001
文献标志码:
A
摘要:
运用密度泛函B3LYP方法,以6-31G*为基组,对季戊四醇四硝酸酯(PETN)和它的4个五氟硫基(—SF5)取代物五氟硫基季戊三醇三硝酸酯(PPTN)、二-五氟硫基季戊二醇二硝酸酯(PDPDN)、三-五氟硫基季戊醇硝酸酯(PTPN)和四五氟硫基季戊烷(TPNT)进行了研究,优化了它们的分子几何构型,进行了振动频率分析,计算预测了它们的密度、热力学函数、爆轰性能和可能的热分解引发键的解离能。结果表明,5种化合物中,PPTN的密度和爆轰性能更好,且PPTN的稳定性优于PETN;随着—SF5数目的增多,化合物的密度增大;但—SF5数目过多时,化合物的爆速和爆压反而降低。PPTN的能量和稳定性满足高能量密度化合物(HEDC)的指标要求。
Abstract:
Four pentafluorosulfanyl deriviatives of pentaerythritol tetranitrate (PETN), including pentaerythritol pentafluorosulfanyl trinitrate (PPTN), pentaerythritol dipentafluorosulfanyl dinitrate (PDPDN), pentaerythritol tripentafluorosulfanyl nitrate (PTPN) and tetraentafluorosulfanyl neopentane (TPNT), were studied by the B3LYP method with the basis set 6-31G*. Their molecular geometries were optimized and vibrational analyses were performed. Densities, thermodynamic functions and detonation performances were estimated. The bond dissociation energy (EBD) of the possible trigger bond was also predicted. Results show that, PPTN has the higher density and better detonation performance among these five compounds.Stability of PPTN is better than that of PETN. With the increase in the number of pentafluorosulfanyl group, the densities would become larger but the detonation velocity and detonation pressure would decrease beyond a certain point of pentafluorosulfanyl groups lead to. Energy and stability values of PPTN satisfy the requirements for the high energetic density compounds.

参考文献/References:

[1]SIKDER A K,SIKDER N.A review of advanced high performance,insensitive and thermally stable energetic materials emerging for military and space applications [J].Journal of Hazardous Materials,2004,112(1/2):1-15.
[2]MARTINEZ H, ZHENG Z Y, DOLBIER W R,Jr. Energetic materials containing fluorine: design, synthesis and testing of furazancontaining energetic materials bearing a pentafluorosulfanyl group [J].ChemInform, 2013, 44(10):112-122.
[3]GARG S, SHREEVE J M. Trifluoromethyl- or pentafluorosulfanyl-substituted poly-1,2,3-triazole compounds as dense stable energetic materials [J]. Journal of Materials Chemistry, 2011, 21(13): 4787-4795.
[4]YE C F, GARD G L, WINTER R W, et al. Synthesis of pentafluorosulfanylpyrazole and pentafluorosulfanyl-1,2,3-triazole and their derivatives as energetic materials by click chemistry [J]. Organic Letters, 2007, 9(19):3841-3844.
[5]HILDENBRAND D L. Mass spectrometric studies of some gaseous sulfur fluorides [J]. The Journal of Physical Chemistry, 1973, 77 (7): 897-902.
[6]SITZMANN M E, GILLIGAN W H, ORNELLAS D L, et al. Polynitroaliphatic explosives containing the pentafluorosulfanyl (SF5) group: the selection and study of a model compound [J]. Journal of Energetic Materials, 1990, 8(4): 352-374.
[7]欧育湘.炸药学[M].北京:北京理工大学出版社,2006:240-241.
 OU Y X. Explosives [M]. Beijing: Beijing Institute of Technology Press, 2006:240-241.
[8]FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03 [CP]. Revision B. 03. Pittsburgh: Gaussian, Inc.,2003.
[9]LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Physical Review B, Condensed Matter, 1988, 37(2):785-789.
[10]BECKE A D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction [J]. The Journal of Chemical Physics, 1992, 96(3):2155-2160.
[11]BECKE A D. Density-functional thermochemistry. III. The role of exact exchange [J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652.
[12]HARIHARAN P C, POPLE J A. The influence of polarization functions on molecular orbital hydrogenation energies [J]. Theoretica Chimica Acta,1973,28(3):213-222.
[13]KAMLET M J, JACOBS S J. Chemistry of detonations.I. A simple method for calculating detonation properties of C—H—N—O explosives [J]. The Journal of Chemical Physics, 1968, 48(1):23-35.
[14]朱卫华,王桂香,贡雪东,等.高能化合物的分子设计[M]. 北京:科学出版社,2014:17-18.
[15]WANG G X, GONG X D, XIAO H M. Theoretical investigation on density , detonation properties , and pyrolsisis mechanism of nitro derivatives of benzene and aminobenzenes [J]. International Journal of Quantum Chemistry, 2009, 109(7):1522-1530.
[16]ZHANG J Y, DU H C, WANG F, et al. DFT studies on a high energy density cage compound 4-trinitroethyl-2, 6 , 8 , 10 , 12-pentanitrohezaazaisowrtzitane [J]. The Journal of Physical Chemistry A , 2011 , 115(24):6617-6621.
[17]HILL T L. An introduction to statistical thermodynamics [M].USA:Addison-Wesley Publishing Co., 1960:22-50.
[18]SCOTT A P, RADOM L. Harmonic vibrational frequencies: an evaluation of Hartree-Fock, MΦller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors [J]. The Journal of Physical Chemistry, 1996, 100(41): 16502-16513.
[19]WONG M W. Vibrational frequency prediction using density functional theory [J]. Chemical Physics Letters, 1996, 256(4/5):391-399.
[20]张建英.有机笼状化合物的分子设计与性能研究[D].南京:南京理工大学,2013.
 ZHANG J Y.Molecular design and theoretical study on organic cage compounds[D].Nanjing:Nanjing University of Science and Technology,2013.
[21]肖鹤鸣,许晓娟,邱玲. 高能量密度材料的理论设计 [M]. 北京:科学出版社,2008:19-32.

备注/Memo

备注/Memo:
收稿日期:2016-10-17
基金项目:化工学院自然科学基金培育专项;国家自然科学基金(21403110);江苏省自然科学基金(BK20130755)
作者简介:李偲(1993-),男,硕士研究生,主要从事有机含能化合物的理论研究。E-mail:291349055@qq.com
通信作者:高贫(1969-),女,副研究员,主要从事含能物质理化分析和理论研究。E-mail:gaop1969@tom.com
王桂香(1978-),女,副教授,主要从事含能材料的理论计算研究。E-mail:wanggx1028@163.com
更新日期/Last Update: 2017-03-20