[1]汝承博①,许建兵①,代骥①,等.基于MEMS的固体化学微推进器阵列技术综述[J].爆破器材,2016,45(06):1-10.[doi:10.3969/j.issn.1001-8352.2016.06.001]
 RU Chengbo,XU Jianbing,DAI Ji,et al.A Summary of MEMS Based Solid Propellant Microthrusters (SPM) Array[J].EXPLOSIVE MATERIALS,2016,45(06):1-10.[doi:10.3969/j.issn.1001-8352.2016.06.001]
点击复制

基于MEMS的固体化学微推进器阵列技术综述()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
45
期数:
2016年06
页码:
1-10
栏目:
基础理论
出版日期:
2016-11-16

文章信息/Info

Title:
A Summary of MEMS Based Solid Propellant Microthrusters (SPM) Array
文章编号:
5090
作者:
汝承博许建兵代骥叶迎华朱朋胡艳沈瑞琪
南京理工大学化工学院(江苏南京,210094)
Author(s):
RU Chengbo XU Jianbing DAI Ji YE Yinghua ZHU Peng HU Yan SHEN Ruiqi
School of Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
固体化学微推进器阵列点火电路推进剂比冲键合
Keywords:
solid propellant microthursters (SPM) array ignition circuit propellant specific impulse bonding technique
分类号:
TJ450;TQ038
DOI:
10.3969/j.issn.1001-8352.2016.06.001
文献标志码:
A
摘要:
基于微机电系统(MEMS)技术的固体化学微推进器阵列具有结构简单、无活动部件、功耗低、可靠性高等优点,可以用于微卫星的姿态调整、重力或阻力补偿及轨道变换等任务。国内外相继开展了固体化学微推进器阵列技术的研究。从结构设计、推进剂选择、键合工艺、点火电路等方面综述了各研究团队采取的技术途径和取得的进展,分析了各种技术途径的优缺点。提出了通过调整喷管结构和优化推进剂,提高微推进器的单元冲量,采用具有寻址点火特征的交叉式引线结构点火阵列,解决点火控制电路结构复杂的难题,并指出了固体化学微推进器阵列技术的发展方向。
Abstract:
The MEMS based solid propellant microthrusters (SPM) array having the advantages of simple configuration, absence of moving parts, low energy dissipation, and high reliability, can be used as the micro propulsion system to implement altitude adjustment, gravity or drag compensation and orbital transfer. Many research groups at home or abroad have carried out research on SPM array. This review summarized technology and research advance of SPM array, including architectural design, solid propellant selection, bonding technology, layout of ignition circuit, and analysis of their merits and faults. Proposals were made on improving the thrust performance of microthruters by adjustment of nozzle structure and formula optimization of composite propellant. The ignition circuit is the prerequisite for the development of large-scale integrated SPM array.

参考文献/References:

[1]BANDYOPADHYAY S, SUBRAMANIAN G P, FOUST R, et al. A review of impending small satellite formation flying missions [C]//53rd AIAA Aerospace Sciences Meeting.Kissimmee, Florida, 2015.
[2]JANSON S W, HELVAJIAN H, HANSEN W W, et al. Microthrusters for nanosatellites [C]//The Second International Conference on Integrated Micro Nanotechnology for Space Applications (MNT99). Pasadena, CA, 1999.
[3]尤政, 张高飞. 基于MEMS的微推进系统的研究现状与展望 [J]. 微细加工技术, 2004,16(1):1-8.
YOU Z, ZHANG G F. An review of MEMSbased micropropulsion devellopement [J].Microfabrication Technology, 2004,16(1):1-8.
[4]LEWIS D H, JANSON S W, COHEN R B, et al. Digital micropropulsion [J]. Sensors and Actuators A:Physical, 2000, 80(2): 143-154.
[5]ROSSI C, SCHEID E, ESTVE D. Theoretical and experimental study of silicon micromachined microheater with dielectric stacked membranes [J]. Sensors and Actuators A: Physical, 1997, 63(3): 183-189.
[6]马立志. 化学微推力器装药及其推力性能研究 [D]. 南京:南京理工大学, 2003.
MA L Z. The research of thruster properties and propellant of micro chemical thrusters [D]. Nanjing: Nanjing University of Science and Technology, 2003.
[7]SATHIYANATHAN K, LEE R, CHESSER H, et al. Solid propellant microthruster design for nanosatellite applications[J]. Journal of Propulsion and Power, 2011, 27(6): 1288-1294.
[8]SATHIYANATHAN K,LEE R,CHESSER H,et al. YUsend-1 solid propellant microthruster design, fabrication and testing [C]//24th Annual AIAA/USU Conference on Small Satellites. 2010.
[9]ZHANG K L, CHOU S K, ANG S S. MEMSbased solid propellant microthruster design, simulation, fabrication, and testing [J]. Journal of Microelectromechanical Systems, 2004, 13(2): 165-175.
[10]ZHANG K L, CHOU S K, ANG S S. Investigation on the ignition of a MEMS solid propellant microthruster before propellant combustion [J]. Journal of Micromechanics and Microengineering, 2007, 17(2): 322-332.
[11]ZHANG K L, CHOU S K, ANG S S. A solid propellant microthruster with metal igniter [C]//The Fourth International Workshop on Micro and Nanotechnology for Power Generation and Energy Converion Applications, MEMS, 2004:28-30.
[12]ZHANG K L, CHOU S K, ANG S S. Development of a low-temperature co-fired ceramic solid propellant microthruster [J]. Journal of Micromechanics and Microengineering, 2005, 15(5): 944-952.
[13]ZHANG K L, CHOU S K, ANG S S, et al. A MEMS-based solid propellant microthruster with Au/Ti igniter [J]. Sensors and Actuators A: Physical, 2005, 122(1): 113-123.
[14]ZHANG K L, CHOU S K, ANG S S. Development of a solid propellant microthruster with chamber and nozzle etched on a wafer surface [J]. Journal of Micromechanics and Microengineering, 2004, 14(6): 785-792.
[15]SHEN Q, YUAN W, XIE J, et al. A quantitative optimisation model for a horizontal MEMS solid propellant thruster with experimental verification [J]. Microsystem Technologies, 2015, 22(4): 847-859.
[16]SHEN Q, YUAN W, LI X, et al. An orthogonal analysis method for decoupling the nozzle geometrical parameters of microthrusters [J]. Microsystem Technologies, 2014, 21(6): 1157-1166.
[17] CHAALANE A, ROSSI C, ESTEVE D. The formulation and testing of new solid propellant mixture (DB+x%BP) for a new MEMS-based microthruster [J]. Sensors and Actuators A: Physical, 2007, 138(1): 161-166.
[18]CHAALANE A, CHEMAM R, HOUABES M, et al. A MEMS-based solid propellant microthruster array for space and military applications [C]//Power MEMS 2015. Boston, USA, 2015.
[19]ROSSI C, BRIAND D, DUMONTEUIL M, et al. Matrix of 10× 10 addressed solid propellant microthrusters: review of the technologies[J]. Sensors and Actuators A: Physical, 2006, 126(1): 241-252.
[20]TANAKA S, HOSOKAWA R, TOKUDOME S-I, et al. MEMS-based solid propellant rocket array thruster with electrical feedthroughs[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2003, 46(151): 47-51.
[21]WU X, DONG P, LI Z, et al. Design, fabrication and characterization of a solid propellant micro-Thruster [C]//4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems. Shenzhen, 2009:476-479.
[22]张高飞, 尤政, 胡松启, 等. 基于MEMS的固体推进器阵列 [J]. 清华大学学报(自然科学版), 2004, 44(11): 1489-1492.
ZHANG G F, YOU Z, HU S Q, et al. MEMSbased propulsion arrays with solid propellant [J]. Journal of Tsinghua University (Science & Technology), 2004, 44(11): 1489-1492.
[23]TANAKA S, KONDO K, HABU H, et al. Test of B/Ti multilayer reactive igniters for a micro solid rocket array thruster [J]. Sensors and Actuators A: Physical, 2008, 144(2): 361-366.
[24]ROSSI C, ORIEUX S, LARANGOT B, et al. Design, fabrication and modeling of solid propellant microrocketapplication to micropropulsion [J]. Sensors and Actuators A: Physical, 2002, 99(1): 125-133.
[25]余协正. MEMS 固体化学微推进阵列的设计、制作及其性能研究 [D]. 南京:南京理工大学, 2012.
YU X Z. Design, fabrication, and performance evaluation of MEMS solid propellant thruster array [D]. Nanjing: Nanjing University of Science and Technology, 2012.
[26]ROSSI C, CONTO T D, ESTEVE D, et al. Design, fabrication and modelling of MEMS-based microthrusters for space application [J]. Smart Materials and Structures, 2001, 10(6): 1156-1162.
[27]LIU X, LI T, LI Z, et al. Design, fabrication and test of a solid propellant microthruster array by conventional precision machining[J]. Sensors and Actuators A:Physical,2015,236(6):214-227.
[28]SHEN Q, YUAN W Z, LI H, et al. Silicon-on-insulator-based microsolid propellant thruster array [J]. Micro & Nano Letters, 2015, 10(5): 258-262.
[29]王成玲. MEMS 数字固体微推进器的制备与性能研究 [D]. 南京:南京理工大学, 2014.
 WANG C L. Study on the fabrication and properties of MEMS digital solid micro thruster system [D].Nanjing: Nanjing University of Science and Technology, 2014.
[30]LEE J, KIM K, KWON S. Design, fabrication, and testing of MEMS solid propellant thruster array chip on glass wafer [J]. Sensors and Actuators A: Physical, 2010, 157(1): 126-134.
[31]孙小兵. 微型固体火箭发动机设计与制造关键技术研究 [D]. 上海:上海交通大学, 2007.
SUN X B. Research on key technologies of micro solid propellant thruster [D]. Shanghai: Shanghai Jiao Tong University, 2007.
[32]周海清, 张高飞, 尤政. 固体微推力器设计与数值分析 [J]. 推进技术, 2007, 28(3): 230-234.
ZHOU H Q, ZHANG G F, YOU Z. Design and numerical analysis on a solid micro-thruster [J]. Journal of Propulsion Technology, 2007, 28(3): 230-234.
[33]ROSSI C, LARANGOT B, LAGRANGE D, et al. Final characterizations of MEMS-based pyrotechnical microthrusters [J]. Sensors and Actuators A:Physical, 2005, 121(2): 508-514.
[34]YOUNGNER D W, LU T S, CHOUEIRI E, et al. MEMS mega-pixel micro-thruster arrays for small satellite stationkeeping [C]//14th Annual/USU Conference on Small Satellites. Logan Utah, 2000. 
[35]COLE B D, HAN C J, HIGASHI R E, et al. 512× 512 Infrared cryogenic scene projector arrays [J]. Sensors and Actuators A: Physical, 1995, 48(3): 193-202.
[36]TAKAHASHI K,EBISUZAKI H, KAJIWARA H, et al. Design and testing of mega-bit microthruster arrays [C]//NanoTech 2002 “-At the Edge of Revolution”. Houston, Texas, 2002.[37]PUIG-VIDAL M, LOPEZ J, MIRIBEL P, et al. Electronic circuitry development in a micropyrotechnic system for micropropulsion applications [C]//Proceeding of SPIE-The International Society for Optical Engineering, 2003,5116:260-269.
[38]刘旭辉, 方蜀州. 微型固体推力器阵列寻址点火控制系统研究 [J]. 固体火箭技术, 2010, 33(6): 708-712.
LIU X H, FANG S Z. Research on control system of addressing ignition for solid propellant micro thruster array [J]. Journal of Solid Rocket Technology, 2010, 33(6): 708-712.
[39]刘旭辉, 方蜀州, 王玉林, 等. 大规模固体微推力器阵列点火关键技术 [J]. 固体火箭技术, 2012, 35(2): 183-187,192.
 LIU X H, FANG S Z, WANG Y L, et al. Ignition key technologies of large-scale solid propellant micro-thruster array [J]. Journal of Solid Rocket Technology, 2012, 35(2): 183-187,192.[40]刘旭辉, 方蜀州, 刘书杰, 等. 微型姿控固体推力器阵列点火算法 [J]. 航空动力学报, 2011, 26(7): 1659-1664.
 LIU X H, FANG S Z, LIU S J, et al. Ignition algorithm of solid propellant micro-thruster array for attitude control [J]. Journal of Aerospace Power, 2011, 26(7): 1659-1664.
[41]WANG L L, MUNIR Z A, MAXIMOV Y M. Thermite reactions: their utilization in the synthesis and proces-sing of materials [J]. Journal of Materials Science, 1993, 28(14): 3693-3708.
[42]ROSSI C, ZHANG K,ESTEVE D, et al.Nanoenergetic materials for MEMS:a review[J]. Journal of Microelectromechanical Systems, 2007, 16(4): 919-931.
[43]刘建, 沈瑞琪, 叶迎华, 等. 微细圆管中 B/KNO3 燃烧特性分析 [J]. 含能材料, 2010, 18(3): 335-338.
 LIU J, SHEN R Q, YE Y H, et al. Combustion characteristics of B/KNO3 in microscale tube [J]. Chinese Journal of Energetic Materials, 2010, 18(3):335-338.
[44]刘建, 沈瑞琪, 叶迎华, 等. 微细圆管内火药燃烧稳定性影响因素的数值模拟 [J]. 兵工学报, 2010, 31(10): 1346-1350.
 LIU J, SHEN R Q, YE Y H, et al. Numerical simulation on effect factors of stability of powder combustion in microtube [J]. Acta Armamentarii, 2010, 31(10):1346-1350.
[45]胡松启, 高胜灵, 刘凯, 等. 固体微推进器工作过程数值分析 [J]. 西北大学学报(自然科学版), 2012, 42(1): 21-24.
HU S Q, GAO S L, LIU K, et al. The working process simulation of solid micro-thruster [J]. Journal of Northwest University (Natural Science Edition), 2012, 42(1): 21-24.
[46]FUT’KO S I, ERMOLAEVA E M, DOBREGO K V, et al. Thermodynamic analysis of solid-fuel mixtures glycidyl azide polymer (GAP)/RDX for miniengines of microelectromechanical systems [J]. Journal of Engineering Physics and Thermophysics, 2011, 84(5): 1068-1073.
[47]FUTKO S I, BONDARENKO V P, DOLGII L N. Method for characterizing and choosing the solid mixed fuel for microthrusters of microelectromechanical systems [J]. Journal of Engineering Physics and Thermophysics, 2012, 85(3): 558-564.
[48]LEE J, KIM T. MEMS solid propellant thruster array with micro membrane igniter [J]. Sensors and Actuators A: Physical, 2013, 190(2): 52-60.
[49]申强, 苑伟政, 李太, 等. MEMS 阵列式推进器及其音频采集系统设计与实现 [J]. 固体火箭技术, 2014, 37(2): 277-280.
SHEN Q, YUAN W Z, LI T, et al. Implementation of audio acquisition system for designed MEMS array thruster [J]. Journal of Solid Rocket Technology, 2014, 37(2): 277-280.
[50]何赞. 微推进器结构与制作工艺研究 [D]. 南京:南京理工大学, 2008.
 HE Z. Research of structure and fabrication of microthrusters [D]. Nanjing: Nanjing University of Science and Technology, 2008.
[51]肖贵林. 基于 MEMS 含能推进器性能研究 [D]. 南京:南京理工大学, 2006.
 XIAO G L. Performance evaluation of MEMS based microthrusters [D]. Nanjing: Nanjing University of Science and Technology, 2006.
[52]PUCHADES I, HOBOSYAN M, FULLER L F, et al. MEMS microthrusters with nanoenergetic solid propellants [C]//14th International Conference on Nanotechnology. Toronto, Canada, 2014.
[53]王天放, 李疏芬. 最小自由能法求解GAP在等压绝热条件下的燃烧产物 [J]. 火炸药学报, 2003, 26(4): 16-19.
WANG T F, LI S F. Free-energy minimization investigation on combustion of GAP under constant pressure and adiabatic condition [J]. Chinese Journal of Explosives and Propellants, 2003, 26(4):16-19.
[54]劳允亮, 盛涤伦. 火工药剂学 [M]. 北京: 北京理工大学出版社, 2011.
[55]FISCHER S H, GRUBELICH M C. Theoretical energy release of thermites, intermetallics, and combustible metals [C]//24th International Pyrotechnics Seminar. Monterey, CA, 1998.
[56]JIAN G, CHOWDHURY S, SULLIVAN K, et al. Nanothermite reactions: is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition?[J]. Combustion and Flame, 2013, 160(2): 432-437.
[57]尤政, 张高飞, 林杨, 等. MEMS固体化学推进器设计与建模研究 [J]. 光学精密工程, 2005, 13(2): 117-126.
 YOU Z, ZHANG G F, LIN Y, et al. Design and modeling of MEMS-based solid propellant propulsion [J]. Optical and Precision Engineering, 2005, 13(2): 117-126.
[58]GIULIO L, MARCO B, ALDO F, et al. Microthrusters in silicon for aerospace application [J]. IEEE Aerospace and Electronic Systems Magazine, 2002, 17(9): 22-27.
[59]RUDNYI E B, BECHTOLD T,KORVINK J, et al. Solid propellant microthruster:theory of operation and modelling strategy [C]//NanoTech 2002 -“At the Edge of Revolution”. Houston, Texas, 2002. 
[60]刘明侯, 孙建威, 陈义良, 等. 微推进器推力测试技术 [J]. 力学与实践, 2003, 25(3): 9-14.
 LIU M H, SUN J W, CHEN Y L, et al. The thrust measurement for micro thrusters [J]. Mechanics in Engineering, 2003, 25(3): 9-14.

备注/Memo

备注/Memo:
收稿日期:2016-05-13
基金项目:航天科技创新基金(CASC1507XXX)
作者简介:汝承博(1989-),男,博士研究生,主要从事固体化学微推进器阵列和纳米含能材料应用研究。E-mail:ruchengbo@163.com
通信作者:叶迎华(1962-),女,研究员,主要从事MEMS火工技术、微推进系统以及含能材料应用技术研究。E-mail:yyinghua@njust.edu.cn
更新日期/Last Update: 2016-11-16